|   | 
Details
   web
Records
Author Kovaluyk, V.; Lazarenko, P.; Kozyukhin, S.; An, P.; Prokhodtsov, A.; Goltsman, G.; Sherchenkov, A.
Title Influence of the phase state of Ge2Sb2Te5 thin cover on the parameters of the optical waveguide structures Type Abstract
Year 2019 Publication Proc. Amorphous and Nanostructured Chalcogenides Abbreviated Journal Proc. Amorphous and Nanostructured Chalcogenides
Volume Issue Pages 47-48
Keywords optical waveguides
Abstract The fast switching time of Ge-Sb-Te thin films between amorphous and crystalline states initiated by laser beam as well as significant change of their optical properties and the preservation of metastable states for tens of years open wide perspectives for the application of these materials to fully optical devices [1], including high-speed optical memory [2]. Here we study optical properties of the Ge2Sb2Te5 (GST225) thin films integrated with on-chip silicon nitride O-ring resonator. The rib waveguide of the resonator was formed the first stage of e-beam lithography and subsequent reactive-ion etching. We used the second stage of e-beam lithography combining with lift-off method for the formation of GST225 active region on the resonator ring surface. The amorphous GST225 thin films were prepared by magnetron sputtering, and were capped by thin silicon oxide on their tops. The length of the GST225 active region varied from 0.1 to 20 μ m. Crystallization of amorphous thin films was carried out at the temperature of 400 °C for 30 minutes. Auger electron spectroscopy and transmission electron microscopy were used for studying composition and structure of investigated GST225thin films, respectively. It was observed that crystallization of amorphous GST225 film lead to a decrease of the optical power, transmitted through the waveguide. Comparison of the optical transmittance of O-ring resonators before and after the GST225 deposition allowed to identify the change in the Q-factor and the wavelength peak shift. This can be explained by the differences of the complex refractive indexes of GST225 thin films in the amorphous and crystalline states. From the measurement data, the GST225 effective refractive index was extracted depending on the ring waveguide width of the resonator for a telecommunication wavelength of 1550 nm.
Address
Corporate Author Thesis
Publisher Technical University of Moldova Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Poster Approved no
Call Number Serial 1281
Permanent link to this record
 

 
Author Zvagelsky, R. D.; Chubich, D. A.; Kolymagin, D. A.; Korostylev, E. V.; Kovalyuk, V. V.; Prokhodtsov, A. I.; Tarasov, A. V.; Goltsman, G. N.; Vitukhnovsky, A. G.
Title Three-dimensional polymer wire bonds on a chip: morphology and functionality Type Journal Article
Year 2020 Publication J. Phys. D: Appl. Phys. Abbreviated Journal J. Phys. D: Appl. Phys.
Volume 53 Issue 35 Pages 355102
Keywords photonic wire bonds, PWB
Abstract Modern microchip-scale transceivers are capable of transmitting data at rates of the order of several terabits per second. In this regard, there is an urgent need to improve the interfaces connecting the chips and extend the bandpass of the interconnections. We use an approach combining silicon nitride nanophotonic circuits with 3D polymer waveguides fabricated by direct laser writing, which can be used as photonic interconnections or photonic wire bonds (PWB). These structures are designed, simulated, fabricated, and optimized for better light transmission at the telecommunication wavelength. An important part of this work is the study of the telecom signal transmission in a 3D polymer waveguide connecting two silicon nitride facing tapers. Two cases are considered: the tapers are one opposite the other or misaligned. Initially, the PWB shape was chosen to be Gaussian and then optimized: the top was circle-shaped and with the lower part still being Gaussian. Transmission losses were measured for both types of waveguides with different shapes. The idea of an optical multi-level crossing for photonic integrated circuits is also suggested as a solution to the problem of interconnections within a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1181
Permanent link to this record
 

 
Author Prokhodtsov, A.; Kovalyuk, V.; An, P.; Golikov, A.; Shakhovoy, R.; Sharoglazova, V.; Udaltsov, A.; Kurochkin, Y.; Goltsman, G.
Title Silicon nitride Mach-Zehnder interferometer for on-chip quantum random number generation Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012118
Keywords Mach-Zehnder interferometer, MZI
Abstract In this work, we experimentally studied silicon nitride Mach-Zehnder interferometer (MZI) with two directional couplers and 400 ps optical delay line for telecom wavelength 1550 nm. We achieved the extinction ratio in a range of 0.76-13.86 dB and system coupling losses of 28-44 dB, depending on the parameters of directional couplers. The developed interferometer is promising for the use in a compact random number generator for the needs of a fully integrated quantum cryptography system, where compact design, as well as high generation speed, are needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1178
Permanent link to this record
 

 
Author Venediktov, I. O.; Elezov, M. S.; Prokhodtsov, A. I.; Kovalyuk, V. V.; An, P. P.; Golikov, A. D.; Shcherbatenko, M. L.; Sych, D. V.; Goltsman, G. N.
Title Study of microheater’s phase modulation for on-chip Kennedy receiver Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012117
Keywords Mach-Zehnder interferometers, MZI
Abstract In this work we describe phase modulators for several Mach-Zehnder interferometers (MZI) on silicon nitride platform for telecomm wavelength (1550 nm). We obtained current-voltage and phase-voltage curves for these modulators. MZI are needed for experimental realisation of various quantum receivers that can distinguish weak coherent states of light with extremely low error. Thermo-optical (TO) modulation is ensured by microheaters on one of the arms of MZI, which enables the change of the refractive index of the material with temperature. This approach allows to apply the necessary voltage to the golden microheaters to obtain the required phase change. For the on-chip microheaters we demonstrate the dependence of the phase shift on the voltage applied to our on-chip microheaters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1179
Permanent link to this record
 

 
Author Elmanov, I.; Sardi, F.; Xia, K.; Kornher, T.; Kovalyuk, V.; Prokhodtsov, A.; An, P.; Kuzin, A.; Elmanova, A.; Goltsman, G.; Kolesov, R.
Title Development of focusing grating couplers for lithium niobate on insulator platform Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012127
Keywords grating couplers, lithium niobat
Abstract In this paper, we fabricate and experimentally study focusing grating couplers for lithium niobate on an insulator photonic platform. The transmittance of a waveguide equipped with in- and out-couplers with respect to the grating period is measured with and without silicon dioxide cladding applied. Our results show the influence of silicon dioxide cladding on the efficiency and the central wavelength of grating couplers and can be used to improve grating coupling efficiency. Our study is supported by numerical simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1180
Permanent link to this record