|   | 
Details
   web
Records
Author Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
Year 2002 Publication NASA/ADS Abbreviated Journal NASA/ADS
Volume Issue Pages
Keywords NbN HEB mixers
Abstract (up) Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.
Address Monterey, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002
Notes id.37 Approved no
Call Number Serial 1534
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 361-370
Keywords NbN HEB mixers
Abstract (up) NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W.
Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 405-412
Keywords NbN HEB mixers
Abstract (up) Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1502
Permanent link to this record
 

 
Author Kroug, M.; Cherednichenko, S.; Merkel, H.; Kollberg, E.; Voronov, B.; Gol'tsman, G.; Hübers, H. W.; Richter, H.
Title NbN hot electron bolometric mixers for terahertz receivers Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 962-965
Keywords NbN HEB mixers
Abstract (up) Sensitivity and gain bandwidth measurements of phonon-cooled NbN superconducting hot-electron bolometer mixers are presented. The best receiver noise temperatures are: 700 K at 1.6 THz and 1100 K at 2.5 THz. Parylene as an antireflection coating on silicon has been investigated and used in the optics of the receiver. The dependence of the mixer gain bandwidth (GBW) on the bias voltage has been measured. Starting from low bias voltages, close to operating conditions yielding the lowest noise temperature, the GBW increases towards higher bias voltages, up to three times the initial value. The highest measured GBW is 9 GHz within the same bias range the noise temperature increases by a factor of two.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 312
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M.
Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 448-453
Keywords NbN HEB mixers, applications
Abstract (up) We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1526
Permanent link to this record