Records |
Author |
Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A. |
Title |
Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range |
Type |
Journal Article |
Year |
2016 |
Publication |
J. Biomed. Opt. |
Abbreviated Journal |
J. Biomed. Opt. |
Volume |
21 |
Issue |
9 |
Pages |
97002 (1 to 5) |
Keywords |
BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology |
Abstract |
An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application. |
Address |
Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1083-3668 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:27626901 |
Approved |
no |
Call Number |
|
Serial |
1335 |
Permanent link to this record |
|
|
|
Author |
Iomdina, E. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.; Goltsman, G. N. |
Title |
Terahertz scanning for evaluation of corneal and scleral hydration |
Type |
Journal Article |
Year |
2018 |
Publication |
Sovremennye tehnologii v medicine |
Abbreviated Journal |
STM |
Volume |
10 |
Issue |
4 |
Pages |
143-149 |
Keywords |
BWO; Golay cell; medicine; cornea; sclera; THz radiation; corneal hydration; backward-wave oscillator; avalanche transit-time diode; IMPATT diode |
Abstract |
The aim of the investigation was to study the prospects of using continuous THz scanning of the cornea and the sclera to determine water concentration in these tissues and on the basis of the obtained data to develop the experimental installation for monitoring corneal and scleral hydration degree.Materials and Methods. To evaluate corneal and scleral transmittance and reflectance spectra in the THz range, the developed experimental installations were used to study 3 rabbit corneas and 3 scleras, 2 whole rabbit eyes, and 3 human scleras. Besides, two rabbit eyes were studied in vivo prior to keratorefractive surgery as well as 10 and 21 days following the surgery (LASIK).Results. There have been created novel experimental installations enabling in vitro evaluation of frequency dependence of corneal and scleral transmittance coefficients and reflectance coefficients on water percentage in the THz range. Decrease in corneal water content by 1% was found to lead to reliably established decrease in the reflected signal by 13%. The reflectance spectrum of the whole rabbit eye was measured in the range of 0.13–0.32 THz. The study revealed the differences between the indices of rabbit cornea and sclera, as well as rabbit and human sclera. There was developed a laboratory model of the installation for in vivo evaluation of corneal and scleral hydration using THz radiation.Conclusion. The preliminary findings show that the proposed technique based on the use of continuous THz radiation can be employed to create a device for noninvasive control of corneal and scleral hydration. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1315 |
Permanent link to this record |
|
|
|
Author |
Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P. |
Title |
Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser |
Type |
Journal Article |
Year |
2017 |
Publication |
Radiophys. Quant. Electron. |
Abbreviated Journal |
Radiophys. Quant. Electron. |
Volume |
60 |
Issue |
7 |
Pages |
518-524 |
Keywords |
NbN HEB mixer, QCL |
Abstract |
We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0033-8443 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1322 |
Permanent link to this record |
|
|
|
Author |
Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N. |
Title |
Attojoule energy resolution of direct detector based on hot electron bolometer |
Type |
Conference Article |
Year |
2016 |
Publication |
J. Phys.: Conf. Ser. |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
Volume |
741 |
Issue |
|
Pages |
012165 (1 to 5) |
Keywords |
NbN HEB detector |
Abstract |
We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
Seliverstov_2016 |
Serial |
1337 |
Permanent link to this record |