|   | 
Details
   web
Records
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Seleznev, V.; Morozov, P.; Smirnov, K.
Title High-efficiency single-photon detectors based on NbN films Type Miscellaneous
Year 2013 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract We present our resent results in development and testing of Superconducting Single-Photon Detectors (SSPD) with detection efficiencies greater than 85%. High values of obtained results are assigned to proposed design of the detector with integrated resonator structure, including two-layer optical cavity and anti-reflective coating (ARC).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Poster Approved no
Call Number Serial 1254
Permanent link to this record
 

 
Author Gol’tsman, G.; Korneev, A.; Tarkhov, M.; Seleznev, V.; Divochiy, A.; Minaeva, O.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.
Title Middle-infrared ultrafast superconducting single photon detector Type Conference Article
Year 2007 Publication (up) 32nd IRMW / 15th ICTE Abbreviated Journal 32nd IRMW / 15th ICTE
Volume Issue Pages 115-116
Keywords SSPD, SNSPD
Abstract We present the results of the research on quantum efficiency of the ultrathin-film superconducting single-photon detectors (SSPD) in the wavelength rage from 1 mum to 5.7 mum. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of ~1 % at 5.7 mum wavelength with the SSPD made from 4-nm-thick NbN film. In a pursuit of further performance improvement we endeavored SSPD fabricating from 4-nm-thick MoRe film as an alternative material. The MoRe film exhibited transition temperature of 7.7K, critical current density at 4.2 K temperature was 1.1times10 6 A/cm 2 , and diffusivity 1.73 cmVs. The single-photon response was observed with MoRe SSPD at 1.3 mum wavelength with quantum efficiency estimated to be 0.04%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1246
Permanent link to this record
 

 
Author Zolotov, P.; Divochiy, A.; Korneeva, Yu.; Vakhtomin, Yu.; Seleznev, V.; Smirnov, K.
Title Capability investigation of superconducting single-photon detectors, optimized for 800–1200 nm spectrum range Type Miscellaneous
Year 2015 Publication (up) 3th ICQT Abbreviated Journal 3th ICQT
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract
Address Hotel Ukraina (Radisson), Moscow
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Poster Approved no
Call Number Serial 1253
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K.
Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
Year 2019 Publication (up) AIP Advances Abbreviated Journal AIP Advances
Volume 9 Issue 7 Pages 075307
Keywords NbN HEB mixers, QCL, IR
Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1293
Permanent link to this record
 

 
Author Tarkhov, M.; Claudon, J.; Poizat, J. Ph.; Korneev, A.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Semenov, A. V.; Gol'tsman, G.
Title Ultrafast reset time of superconducting single photon detectors Type Journal Article
Year 2008 Publication (up) Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue 24 Pages 241112 (1 to 3)
Keywords SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 429
Permanent link to this record