|   | 
Details
   web
Records
Author Zolotov, P.; Divochiy, A.; Vakhtomin, Y.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.
Title Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range Type Conference Article
Year (down) 2018 Publication Proc. AIP Conf. Abbreviated Journal
Volume 1936 Issue 1 Pages 020019
Keywords NbN PNR SSPD, SNSPD
Abstract We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number doi:10.1063/1.5025457 Serial 1231
Permanent link to this record
 

 
Author Smirnov, K.; Divochiy, A.; Vakhtomin, Y.; Morozov, P.; Zolotov, P.; Antipov, A.; Seleznev, V.
Title NbN single-photon detectors with saturated dependence of quantum efficiency Type Journal Article
Year (down) 2018 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 31 Issue 3 Pages 035011 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of Rs300/Rs20. The decreasing of Rs300/Rs20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at Ib/Ic ~ 0.8 and wavelength 1310 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1232
Permanent link to this record
 

 
Author Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Seleznev, V. A.; Smirnov, K. V.
Title Development of high-effective superconducting single-photon detectors aimed for mid-IR spectrum range Type Conference Article
Year (down) 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 917 Issue Pages 062037
Keywords NbN SSPD, SNSPD
Abstract We report on development of superconducting single-photon detectors (SSPD) with high intrinsic quantum efficiency in the wavelength range 1.31 – 3.3 μm. By optimization of the NbN film thickness and its compound, we managed to improve detection efficiency of the detectors in the range up to 3.3 μm. Optimized devices showed intrinsic quantum efficiencies as high as 10% at mid-IR range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1233
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Morozov, P.; Seleznev, V.; Smirnov, K
Title Development of fast and high-effective single-photon detector for spectrum range up to 2.3 μm Type Conference Article
Year (down) 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 439-440
Keywords SSPD, SNSPD
Abstract We present the results of development and testing of the single-photon-counting system operating in the wide spectrum rane up to 2.3 mcm. We managed to increase system detection efficiency up to 60% in the range of 1.7-2.3 mcm optimisation of the fabrication methods of superconducting single-photon detectors and application of the single-mode fiber with enlarged core diameter.
Address St. Petersburg, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1255
Permanent link to this record
 

 
Author Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V.
Title Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
Year (down) 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 737 Issue Pages 012032
Keywords WSi SSPD, SNSPD, NEP
Abstract We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1235
Permanent link to this record