|   | 
Details
   web
Records
Author Semenov, A. V.; Devyatov, I. A.; Ryabchun, S. A.; Maslennikov, S. N.; Maslennikova, A. S.; Larionov, P. A.; Voronov, B. M.; Chulkova, G. M.
Title Absorption of terahertz electromagnetic radiation in dirty superconducting film at arbitrary type of the spectral functions Type Journal Article
Year 2011 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 10 Pages
Keywords terahertz electromagnetic radiation; superconductors; detectors of terahertz range
Abstract A problem of absorption of high-frequency electromagnetic field in dirty superconductor is treated within Keldysh technic. Expression for the source term in the kinetic equation for quasiparticle distribution function is derived. The result is significant for deriving a consistent microscopic theory of superconducting detectors for terahertz frequency range, perspective detectors on kinetic inductance of current-biased superconducting strip and on Josephson inductance of tunnel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 7 pages Approved no
Call Number Serial 1117
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N.
Title Superconductivity in highly disordered NbN nanowires Type Journal Article
Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 27 Issue 47 Pages 47lt02 (1 to 8)
Keywords NbN nanowires
Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:27782000 Approved no
Call Number Serial 1332
Permanent link to this record
 

 
Author Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S; Astafiev, Oleg
Title Coherent dynamics and decoherence in a superconducting weak link Type Journal Article
Year 2016 Publication Physic. Rev. B, Abbreviated Journal Physic. Rev. B,
Volume 94 Issue Pages 180508
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 1123
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S.
Title Thermal relaxation in metal films bottlenecked by diffuson lattice excitations of amorphous substrates Type Miscellaneous
Year 2021 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages
Keywords metal films, NbN, InOx, Au/Ni, thermal relaxation
Abstract Here we examine the role of the amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The studied samples are made up of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry was used to measure the electron temperature Te of the films as a function of Joule power per unit of area P2D. In all samples, we observe the dependence P2D∝Tne with the exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear T-dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for the phonon mean free path smaller than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1163
Permanent link to this record
 

 
Author Saveskul, N. A.; Titova, N. A.; Baeva, E. M.; Semenov, A. V.; Lubenchenko, A. V.; Saha, S.; Reddy, H.; Bogdanov, S. I.; Marinero, E. E.; Shalaev, V. M.; Boltasseva, A.; Khrapai, V. S.; Kardakova, A. I.; Goltsman, G. N.
Title Superconductivity behavior in epitaxial TiN films points to surface magnetic disorder Type Journal Article
Year 2019 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 12 Issue 5 Pages 054001
Keywords epitaxial TiN films
Abstract We analyze the evolution of the normal and superconducting properties of epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase of the residual resistivity, that becomes dominated by diffusive surface scattering for d≤20nm. At the same time, a substantial thickness-dependent reduction of the superconducting critical temperature is observed compared to the bulk TiN value. In such high-quality material films, this effect can be explained by a weak magnetic disorder residing in the surface layer with a characteristic magnetic defect density of approximately 1012cm−2. Our results suggest that surface magnetic disorder is generally present in oxidized TiN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1166
Permanent link to this record