|   | 
Details
   web
Records
Author Huebers, Heinz-Wilhelm; Pavlov, S.; Semenov, A.; Köhler, R.; Mahler, L.; Tredicucci, A.; Beere, H.; Ritchie, D.; Linfield, E.
Title Terahertz quantum cascade laser as local oscillator in a heterodyne receiver Type Journal Article
Year 2005 Publication Optics Express Abbreviated Journal
Volume 13 Issue 15 Pages 5890-5896
Keywords QCL heterodyne, 6 mW at 2.5 THz, HEB mixer, terahertz
Abstract Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 627
Permanent link to this record
 

 
Author Semenov, A. D.; Nebosis, R. S.; Gousev, Yu. P.; Heusinger, M. A.; Renk, K. F.
Title Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model Type Journal Article
Year 1995 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 52 Issue 1 Pages 581-590
Keywords HEB, NbN phonon scecific heat, Cp
Abstract Photoresponse of a superconducting film in the resistive state to pulsed radiation has been studied in the framework of a model assuming that two different effective temperatures can be assigned to the quasiparticle and phonon nonequilibrium distributions. The coupled electron-phonon-substrate system is described by a system of time-dependent energy-balance differential equations for effective temperatures. An analytical solution of the system is given and calculated voltage transients are compared with experimental photoresponse signals taking into account the radiation pulse shape and the time resolution of the readout electronics. It is supposed that a resistive state (vortices, fluxons, network of intergrain junctions, hot spots, phase slip centers) provides an ultrafast connection between electron temperature changes and changes of the film resistance and thus plays a minor role in the temporal evolution of the response. In accordance with experimental observations a two-component response was revealed from simulations. The slower component corresponds to a bolometric mechanism while the fast component is connected with the relaxation of the electron temperature. Calculated photoresponse transients are presented for different ratios of the electron and phonon specific heat, radiation pulse durations and fluences, and frequency band passes of registration electronics. From the amplitude of the bolometric component we determine the radiation energy absorbed in a film. This enables us to reveal an intrinsic electron-phonon scattering time even if it is much shorter than the time resolution of readout electronics. We analyze experimental voltage transients for NbN, YBa2Cu3O7, and TlBa2Ca2Cu3O9 superconducting films and find the electron-phonon interaction times at the transition temperatures of 17, 2.5, and 1.8 ps, respectively. The values are in reasonable agreement with data of other experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 903
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N.
Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300704 (1 to 4)
Keywords HEB mixer, IR, optical antenna
Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 952
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Gousev, Y. P.; Elant’ev, A. I.; Semenov, A. D.
Title Electromagnetic radiation mixer based on electron heating in resistive state of superconductive Nb and YBaCuO films Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 1317-1320
Keywords YBCO, HTS, Nb HEB mixers
Abstract A theory of an electron-heating mixer which makes it possible to calculate all the characteristics of the device is developed. It is shown that positive conversion gain is possible for such a mixer in the millimeter to near-infrared wavelength range. The dynamic range and the optimum heterodyne power can be selected from a very wide interval by varying the mixing element volume. Measurements made for Nb within the frequency range of 120-750 GHz confirm the theory. The conversion loss obtained at T=1.6 K and normalized to the element reaches 0.3 dB in the intermediate frequency band of 40 MHz; the possible noise temperature is 50 K. The estimation of noise temperature and output band for YBaCuO at T=77 yields 200 K and more than 10 GHz, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-0069 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1681
Permanent link to this record
 

 
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R.
Title Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 574-577
Keywords NbN SSPD, SNSPD
Abstract A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1547
Permanent link to this record