toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E. M.; Gol'tsman, G. N.; Potapov, V. D.; Sergeev, A. V. url  doi
openurl 
  Title Restriction of microwave enhancement of superconductivity in impure superconductors due to electron-electron interaction Type Journal Article
  Year 1991 Publication Phys. B Condens. Mat. Abbreviated Journal Phys. B Condens. Mat.  
  Volume 169 Issue 1-4 Pages (down) 629-630  
  Keywords impure superconductors  
  Abstract Transition from microwave enhancement of supercurrent to superconductivity suppression is investigated in impure superconductors. It is demonstrated that frequency range of enhancement effect narrows with the decrease of electron mean free path, ℓ, and at ℓ⩽1nm electron heating is observed in the whole frequency range. Dependences of frequency boundaries on ℓ are explained by taking into account strong electron-electron interaction in impure metals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1682  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Lulkin, A.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Electron-phonon interaction in ultrathin Nb films Type Journal Article
  Year 1990 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 70 Issue 3 Pages (down) 505-511  
  Keywords Nb films  
  Abstract A study was made of the heating of electrons in normal resistive states of superconducting thin Nb films. The directly determined relaxation time of the resistance of a sample and the rise of the electron temperature were used to find the electron-phonon interaction time rep,, The dependence of rep, on the mean free path of electrons re,, a 1-'demonstrated, in agreement with the theoretical predictions, that the contribution of the inelastic scattering of electrons by impurities to the energy relaxation process decreased at low temperatures and the observed temperature dependence rep, a T 2 was due to a modification of the phonon spectrum in thin fllms.

1. Much new information on the electron-phonon interaction time?;,, in thin films of normal metals and superconductors has been published recently. This information has been obtained mainly as a result of two types of measurement. One includes experiments on weak electron localization investigated by the method of quantum interference corrections to the conductivity of disordered conductors, which can be used to find the relaxation time T, of the phase of the electron wave function. In the absence of the scattering of electrons by paramagnetic impurities the relaxation time T, is associated with the most effective process of energy relaxation: T;= TL+ rep;, where T,, is the electronelectron relaxation time. At low temperatures, when the dependence T; a T is exhibited by thin disordered films, the dominant channel is that of the electron-electron relaxation and there is a lower limit to the temperature range in which rep, can be investigated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 241  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  doi
openurl 
  Title Mechanism of picosecond response of granular YBaCuO films to electromagnetic radiation Type Journal Article
  Year 1990 Publication Solid State Communications Abbreviated Journal Solid State Communications  
  Volume 76 Issue 4 Pages (down) 493-497  
  Keywords YBCO HTS detectors  
  Abstract The ultrafast mechanisms of radiation detection in granular YBaCuO films are studied in the wide wavelength range from millimeter to near infrared. With the rise of radiation frequency the Josephson detection at the grain boundary weak links is replaced by electron heating into the grains. This change occurs in the submillimeter wavelength range. Electron-phonon relaxation time τeph is determined by direct measurements and analyses quasistationary electron heating. Temperature dependence of τeph at T ≤ 40 K was found to be τeph ∼ T−1. The results show that detectors with the response time of few picoseconds at nitrogen temperature are attainable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1685  
Permanent link to this record
 

 
Author Men’shchikov, E. M.; Gogidze, I. G.; Sergeev, A. V.; Elant’ev, A. I.; Kuminov, P. B.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Superconducting fast detector based on the nonequilibrium inductance response of a film of niobium nitride Type Journal Article
  Year 1997 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 23 Issue 6 Pages (down) 486-488  
  Keywords NbN KID  
  Abstract A new type of fast detector is proposed, whose operation is based on the variation of the kinetic inductance of a superconducting film caused by nonequilibrium quasiparticles created by the electromagnetic radiation. The speed of the detector is determined by the rate of multiplication of photo-excited quasiparticles, and is nearly independent of the temperature, being less than 1 ps for NbN. Models based on the Owen-Scalapino scheme give a good description of the experimentally determined dependence of the power-voltage sensitivity of the detector on the modulation frequency. The lifetime of the quasiparticles is determined, and it is shown that the reabsorption of nonequilibrium phonons by the condensate has a substantial effect even in ultrathin NbN films 5 nm thick, and results in the maximum possible quantum yield. A low concentration of equilibrium quasiparticles and a high quantum yield result in a detectivity D*=1012 W−1·Hz1/2 at a temperature T=4.2 K and D*=1016 W−1·cm· Hz1/2 at T=1.6 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1593  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Heating of electrons in a superconductor in the resistive state by electromagnetic radiation Type Journal Article
  Year 1984 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 59 Issue 2 Pages (down) 442-450  
  Keywords Nb HEB  
  Abstract The effect of heating of electrons relative to phonons is observed and investigated in a superconducting film that is made resistive by current and by an external magnetic field. The effect is manifested by an increase of the film resistance under the influence of the electromagnetic radiation, and is not selective in the frequency band 10^10-10^15 Hz. The independence of the effect of frequency under conditions of strong scattering by static defects is attributed to the decisive role of electron-electron collisions in the distribution function. The experimentally obtained characteristic time of resistance variation near the superconducting transition corresponds to the relaxation time of the order parameter, while at lower temperatures and fields it corresponds to the time of the inelastic electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ phisix @ Serial 983  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: