toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Heating of quasiparticles in a superconducting film in the resistive state Type Journal Article
  Year 1981 Publication JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 34 Issue 5 Pages 268-271  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1716  
Permanent link to this record
 

 
Author Ptitsina, N. G.; Chulkova, G. M.; Il’in, K. S.; Sergeev, A. V.; Pochinkov, F. S.; Gershenzon, E. M.; Gershenson, M. E. url  doi
openurl 
  Title Electron-phonon interaction in disordered metal films: The resistivity and electron dephasing rate Type Journal Article
  Year 1997 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 56 Issue 16 Pages 10089-10096  
  Keywords disordered metal films, electron-phonon interaction, electron dephasing rate, resistivity  
  Abstract The temperature dependence of the resistance of films of Al, Be, and NbC with small values of the electron mean free path l=1.5–10nm has been measured at 4.2–300 K. The resistance of all the films contains a T2 contribution that is proportional to the residual resistance; this contribution has been attributed to the interference between the elastic electron scattering and the electron-phonon scattering. Fitting the data to the theory of the electron-phonon-impurity interference (M. Yu. Reiser and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 92, 224 (1987) [Sov. Phys. JETP 65, 1291 (1987)]), we obtain constants of interaction of the electrons with transverse phonons, and estimate the contribution of this interaction to the electron dephasing rate in thin films of Au, Al, Be, Nb, and NbC. Our estimates are in a good agreement with the experimental data on the inelastic electron-phonon scattering in these films. This indicates that the interaction of electrons with transverse phonons controls the electron-phonon relaxation rate in thin-metal films over a broad temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1766  
Permanent link to this record
 

 
Author Chulcova, G. M.; Ptitsina, N. G.; Gershenzon, E. M.; Gershenzon, M. E.; Sergeev, A. V. url  doi
openurl 
  Title Effect of the interference between electron-phonon and electron-impurity (boundary) scattering on resistivity Nb, Al, Be films Type Conference Article
  Year 1996 Publication Czech J. Phys. Abbreviated Journal Czech J. Phys.  
  Volume 46 Issue S5 Pages 2489-2490  
  Keywords Al, Be, Nb films  
  Abstract The temperature dependence of the resistivity of thin Nb, Al, Be films has been studied over a wide temperature range 4-300 K. We have found that the temperature-dependent correction to the residual resistivity is well described by the sum of the Bloch-Grüneisen term and the term originating from the interference between electron-phonon and electron-impurity scattering. Study of the transport interference phenomena allows to determine electron-phonon coupling in disordered metals. The interference term is proportional to T2 and also to the residual resistivity and dominates over the Bloch-Grüneisen term at low temperatures (T<40 K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-4626 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1767  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  doi
openurl 
  Title Heating of electrons in resistive state of superconducting films. Detectors, mixers and switches Type Conference Article
  Year 1992 Publication Progress in High Temperature Superconductivity Abbreviated Journal Progress in High Temperature Superconductivity  
  Volume 32 Issue Pages 190-195  
  Keywords superconducting films, heating of electrons  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference on High Temperature Superconductivity and Localization Phenomena , Moscow, Russia , 11 – 15 May 1991  
  Notes (up) https://books.google.co.kr/books?hl=en&lr=&id=uCI0DwAAQBAJ&oi=fnd&pg=PA190&ots=z7WGjXYWr4&sig=TQ6G6dKsmcj4faYe1ZLw_BFmps8 Approved no  
  Call Number Serial 1666  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.  
  Volume 49 Issue 13 Pages 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: