|   | 
Details
   web
Records
Author Gershenson, M. E.; Gong, D.; Sato, T.; Karasik, B. S.; Sergeev, A. V.
Title Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures Type Journal Article
Year (down) 2001 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 79 Issue Pages 2049-2051
Keywords HEB detector, FIR, far infrared
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ heb_eph_interaction_Gershenzon Serial 315
Permanent link to this record
 

 
Author Men’shchikov, E. M.; Gogidze, I. G.; Sergeev, A. V.; Elant’ev, A. I.; Kuminov, P. B.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Superconducting fast detector based on the nonequilibrium inductance response of a film of niobium nitride Type Journal Article
Year (down) 1997 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 23 Issue 6 Pages 486-488
Keywords NbN KID
Abstract A new type of fast detector is proposed, whose operation is based on the variation of the kinetic inductance of a superconducting film caused by nonequilibrium quasiparticles created by the electromagnetic radiation. The speed of the detector is determined by the rate of multiplication of photo-excited quasiparticles, and is nearly independent of the temperature, being less than 1 ps for NbN. Models based on the Owen-Scalapino scheme give a good description of the experimentally determined dependence of the power-voltage sensitivity of the detector on the modulation frequency. The lifetime of the quasiparticles is determined, and it is shown that the reabsorption of nonequilibrium phonons by the condensate has a substantial effect even in ultrathin NbN films 5 nm thick, and results in the maximum possible quantum yield. A low concentration of equilibrium quasiparticles and a high quantum yield result in a detectivity D*=1012 W−1·Hz1/2 at a temperature T=4.2 K and D*=1016 W−1·cm· Hz1/2 at T=1.6 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1593
Permanent link to this record
 

 
Author Semenov, A. D.; Heusinger, M. A.; Renk, K. F.; Menschikov, E.; Sergeev, A. V.; Elant'ev, A. I.; Goghidze, I. G.; Gol'tsman, G. N.
Title Influence of phonon trapping on the performance of NbN kinetic inductance detectors Type Journal Article
Year (down) 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages 3083-3086
Keywords NbN KID
Abstract Voltage and microwave photoresponse of NbN thin films to modulated and pulsed optical radiation reveals, far below the superconducting transition, a response time consistent with the lifetime of nonequilibrium quasiparticles. We show that even in 5 nm thick films at 4.2 K the phonon trapping is significant resulting in a quasiparticle lifetime of a few nanoseconds that is an order of magnitude larger than the recombination time. Values and temperature dependence of the quasiparticle lifetime obey the Bardeen-Cooper-Schrieffer theory and are in quantitative agreement with the electron-phonon relaxation rate determined from the resistive response near the superconducting transition. We discuss a positive effect of the phonon trapping on the performance of kinetic inductance detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1598
Permanent link to this record
 

 
Author Ptitsina, N. G.; Chulkova, G. M.; Il’in, K. S.; Sergeev, A. V.; Pochinkov, F. S.; Gershenzon, E. M.; Gershenson, M. E.
Title Electron-phonon interaction in disordered metal films: The resistivity and electron dephasing rate Type Journal Article
Year (down) 1997 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 56 Issue 16 Pages 10089-10096
Keywords disordered metal films, electron-phonon interaction, electron dephasing rate, resistivity
Abstract The temperature dependence of the resistance of films of Al, Be, and NbC with small values of the electron mean free path l=1.5–10nm has been measured at 4.2–300 K. The resistance of all the films contains a T2 contribution that is proportional to the residual resistance; this contribution has been attributed to the interference between the elastic electron scattering and the electron-phonon scattering. Fitting the data to the theory of the electron-phonon-impurity interference (M. Yu. Reiser and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 92, 224 (1987) [Sov. Phys. JETP 65, 1291 (1987)]), we obtain constants of interaction of the electrons with transverse phonons, and estimate the contribution of this interaction to the electron dephasing rate in thin films of Au, Al, Be, Nb, and NbC. Our estimates are in a good agreement with the experimental data on the inelastic electron-phonon scattering in these films. This indicates that the interaction of electrons with transverse phonons controls the electron-phonon relaxation rate in thin-metal films over a broad temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1766
Permanent link to this record
 

 
Author Il'in, K. S.; Karasik, B. S.; Ptitsina, N. G.; Sergeev, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen, E. V.; Krasnosvobodtsev, S. I.
Title Electron-phonon-impurity interference in thin NbC films: electron inelastic scattering time and corrections to resistivity Type Conference Article
Year (down) 1996 Publication Czech. J. Phys. Abbreviated Journal Czech. J. Phys.
Volume 46 Issue S2 Pages 857-858
Keywords NbC films
Abstract Complex study of transport properties of impure NbC films with the electron mean free pathl=0.6–13 nm show the crucial role of the electron-phonon-impurity interference (EPII). In the temperature range 20–70 K we found the interference correction to resistivity proportional to T2 and to the residual resistivity of the film. Using the comprehensive theory of EPII, we determine the electron coupling with transverse phonons and calculate the electron inelastic scattering time. Direct measurements of the inelastic electron scattering time using a response to a high-frequency amplitude modulated cw radiation agree well with the theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-4626 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1617
Permanent link to this record