|
Records |
Links |
|
Author |
Heslinga, D. R.; Shafranjuk, S. E.; van Kempen, H.; Klapwijk, T. M. |
|
|
Title |
Observation of double-gap-edge Andreev reflection at Si/Nb interfaces by point-contact spectroscopy |
Type |
Journal Article |
|
Year |
1994 |
Publication |
Phys. Rev. B |
Abbreviated Journal |
Phys. Rev. B |
|
|
Volume |
49 |
Issue |
15 |
Pages |
10484-10494 |
|
|
Keywords |
Nb, Si, Nb-Si, Nb/Si, Si/Nb, Andreev reflection, point-contact spectroscopy |
|
|
Abstract |
Andreev reflection point-contact spectroscopy is performed on a bilayer consisting of 50-nm degenerately doped Si backed with Nb. Due to the short mean free path both injection into and transport across the Si layer are diffusive, in contrast to the ballistic conditions prevailing in clean metal layers. Nevertheless a large Andreev signal is observed in the point-contact characteristics, not reduced by elastic scattering in the Si layer or by interface scattering, but only limited by the transmission coefficient of the metal-semiconductor point contact. Two peaks in the Andreev reflection probability are visible, marking the values of the superconducting energy gap at the interface on the Nb and Si sides. This interpretation is supported by a method of solving the Bogolubov equations analytically using a simplified expression for the variation of the order parameter close to the interface. This observation enables a comparison with theoretical predictions of the gap discontinuity in the proximity effect. It is found that the widely used de Gennes model does not agree with the experimental data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1005 |
|
Permanent link to this record |
|
|
|
|
Author |
Yang, Y.; Fedorov, G.; Shafranjuk, S. E.; Klapwijk, T. M.; Cooper, B. K.; Lewis, R. M.; Lobb, C. J.; Barbara, P. |
|
|
Title |
Electronic transport and possible superconductivity at Van Hove singularities in carbon nanotubes |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Nano Lett. |
Abbreviated Journal |
Nano Lett. |
|
|
Volume |
15 |
Issue |
12 |
Pages |
7859-7866 |
|
|
Keywords |
carbon nanotubes, CNT, tunable superconductivity, van Hove singularities |
|
|
Abstract |
Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube. |
|
|
Address |
Department of Physics, Georgetown University , Washington, District of Columbia 20057, United States |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:26506109; Suuplementary info (attached to pdf) DOI: 10.1021/acs.nanolett.5b02564 |
Approved |
no |
|
|
Call Number |
|
Serial |
1782 |
|
Permanent link to this record |