|
Records |
Links |
|
Author |
Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N. |
|
|
Title |
A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Semicond. |
Abbreviated Journal |
Semicond. |
|
|
Volume |
39 |
Issue |
9 |
Pages |
1082-1086 |
|
|
Keywords |
2D electron gas, AlGaAs/GaAs heterostructures, mixers |
|
|
Abstract |
Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1063-7826 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1463 |
|
Permanent link to this record |
|
|
|
|
Author |
Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N. |
|
|
Title |
Ultrafast superconducting bolometer receivers for terahertz applications |
Type |
Abstract |
|
Year |
2009 |
Publication |
Proc. PIERS |
Abbreviated Journal |
Proc. PIERS |
|
|
Volume |
|
Issue |
|
Pages |
867 |
|
|
Keywords |
HEB |
|
|
Abstract |
The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe. |
|
|
Address |
Moscow, Russia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
The Electromagnetics Academy |
Place of Publication |
777 Concord Avenue, Suite 207 Cambridge, MA 02138 |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1559-9450 |
ISBN |
978-1-934142-09-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ sasha @ ozhegovultrafast |
Serial |
1022 |
|
Permanent link to this record |
|
|
|
|
Author |
Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G. |
|
|
Title |
Heterodyne source of THz range based on semiconductor superlattice multiplier |
Type |
Conference Article |
|
Year |
2011 |
Publication |
IRMMW-THz |
Abbreviated Journal |
IRMMW-THz |
|
|
Volume |
|
Issue |
|
Pages |
1-2 |
|
|
Keywords |
NbN HEB mixer, superlattice |
|
|
Abstract |
We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
6105209 |
Serial |
1384 |
|
Permanent link to this record |
|
|
|
|
Author |
Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S. |
|
|
Title |
Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Tech. Phys. |
Abbreviated Journal |
Tech. Phys. |
|
|
Volume |
57 |
Issue |
7 |
Pages |
971-974 |
|
|
Keywords |
semiconducting superlattice frequency multiplier, NbN HEB mixers |
|
|
Abstract |
We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1063-7842 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1378 |
|
Permanent link to this record |
|
|
|
|
Author |
Smirnov, A. V.; Baryshev, A. M.; de Bernardis, P.; Vdovin, V. F.; Gol'tsman, G. N.; Kardashev, N. S.; Kuz'min, L. S.; Koshelets, V. P.; Vystavkin, A. N.; Lobanov, Yu. V.; Ryabchun, S. A.; Finkel, M. I.; Khokhlov, D. R. |
|
|
Title |
The current stage of development of the receiving complex of the millimetron space observatory |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Radiophys. Quant. Electron. |
Abbreviated Journal |
Radiophys. Quant. Electron. |
|
|
Volume |
54 |
Issue |
8 |
Pages |
557-568 |
|
|
Keywords |
Millimetron space observatory, HEB applications |
|
|
Abstract |
We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1079 |
|
Permanent link to this record |