|   | 
Details
   web
Records
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N.
Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
Year 2005 Publication Semicond. Abbreviated Journal Semicond.
Volume 39 Issue 9 Pages 1082-1086
Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers
Abstract (up) Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1463
Permanent link to this record
 

 
Author Smirnov, A.; Golubev, E.; Arkhipov, M.; Filina, E.; Pyshnov, V.; Myshonkova, N.; Fedorchuk, S.; Kosmovich, T.; Vinogradov, I.; Baryshev, A.; de Graauw, Th.; Likhachev, S.; Kardashev, N.
Title Millimetron Space Observatory: progress in the development of payload module Type Conference Article
Year 2019 Publication Proc. 30th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 30th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 180-181
Keywords Millimetron space observatory, primary mirror
Abstract (up) Millimetron Space Observatory (MSO) is mission addressed to creation a space cryogenic telescope with aperture about 10-m [1]. Such telescope will allow scientific community to have an astronomical instrument with enormous sensitivity and angular resolution in the submillimeter and far-infrared wavelength ranges. We plan to install at the telescope several FIR and sub-millimeter scientific instruments, which will enable high-resolution imaging and spectroscopy observations with unprecedented sensitivity. At the same time, MSO will enable observations with an extremely high angular resolution (up to 0.1×10 -6 arcsec) as an element of a ground-space very long baseline interferometry system (S-VLBI). Thereby the observatory will contribute breakthrough capability into solution a number of cosmology and fundamental astrophysics questions about the origin and evolution of our Universe, galaxies, stars and other objects [2]. The MSO is divided into two parts: the payload module and the bus module. Due to the complexity of the payload module, most of the recent years of work are focused on it. This module includes an antenna of the telescope, scientific receivers, functional and service systems and a high-gain radio system for transmitting scientific data to Earth. The primary mirror of the telescope will be deployable and consist from of a 3-m aperture central part surrounded by 24 deployable petals. The concept of petals deployment is based on the successfully launched and currently working Radioastron project [3]. The surface accuracy of the deployable 10-m primary mirror of Radioastron achieves about 1 mm in space conditions. The telescope of MSO would have much better surface accuracy – less than 10 μm (rms). In order to achieve this we plan to use an active surface control system based on a wave front sensing. This system will be periodically employed to correct inaccuracies in the positions of the panels caused by different factors. A combination of a high modulus carbon fiber reinforced plastic (CFRP) and a cyanate ester resin as a binder provides a lightweight structure with low moisture absorption, high thermal stability and high stiffness. This combination has been chosen for the material of the primary mirror of telescope and many parts of it. The panels are mounted on the back support structure (Fig. 1) made from CFRP via precision cryogenic actuators. To achieve the required sensitivity of the telescope in the submm/FIR we need to cool antenna down to the temperature less than 10K (goal). It may be possible to do this on-orbit only by a combination of effective radiation cooling and additional active mechanical cooling. A cold space antenna requires minimization and stability of external thermal radiation. This is one of the reasons why MSO will be placed into orbit around the second Earth-Sun Lagrange point (L2). The MSO antenna into L2 will be cooled passively to a temperature about 30 – 60K by a suite of the deployable multi-layer V-groove shields. The following steps to reduce the temperature of the antenna are based on active reducing the thermal loads applied to it. Active mechanical cooling is based on existing close cycling space mechanical coolers. In this work, we will focus on the progress in the development of payload module.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1280
Permanent link to this record
 

 
Author Smirnov, A. V.; Karmantsov, M. S.; Smirnov, K. V.; Vakhtomin, Y. B.; Masterov, D. V.; Tarkhov, M. A.; Pavlov, S. A.; Parafin, A. E.
Title Terahertz response of thin-film YBCO bolometers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 12 Pages 1716-1719
Keywords YBCO HEB
Abstract (up) The bolometric response of high-temperature thin-film YBCO superconducting detectors to an electromagnetic radiation with a frequency of 2.5 THz is measured for the first time. The minimum value of the noise-equivalent power of the detectors is 3.5 × 10−9 W/Hz−−−√. The feasibility of further increasing the sensitivity of the detectors is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1817
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N.
Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume Issue Pages 867
Keywords HEB
Abstract (up) The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.
Address Moscow, Russia
Corporate Author Thesis
Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022
Permanent link to this record
 

 
Author Smirnov, A. V.; Baryshev, A. M.; de Bernardis, P.; Vdovin, V. F.; Gol'tsman, G. N.; Kardashev, N. S.; Kuz'min, L. S.; Koshelets, V. P.; Vystavkin, A. N.; Lobanov, Yu. V.; Ryabchun, S. A.; Finkel, M. I.; Khokhlov, D. R.
Title The current stage of development of the receiving complex of the millimetron space observatory Type Journal Article
Year 2012 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 54 Issue 8 Pages 557-568
Keywords Millimetron space observatory, HEB applications
Abstract (up) We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1079
Permanent link to this record