toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bruderer, S.; Benz, A. O.; van Dishoeck, E. F.; Melchior, M.; Doty, S. D.; van der Tak, F.; Stäuber, P.; Wampfler, S. F.; Dedes, C.; Yıldız, U. A.; Pagani, L.; Giannini, T.; de Graauw, Th.; Whyborn, N.; Teyssier, D.; Jellema, W.; Shipman, R.; Schieder, R.; Honingh, N.; Caux, E.; Bächtold, W.; Csillaghy, A.; Monstein, C.; Bachiller, R.; Baudry, A.; Benedettini, M.; Bergin, E.; Bjerkeli, P.; Blake, G. A.; Bontemps, S.; Braine, J.; Caselli, P.; Cernicharo, J.; Codella, C.; Daniel, F.; di Giorgio, A. M.; Dominik, C.; Encrenaz, P.; Fich, M.; Fuente, A.; Goicoechea, J. R.; Helmich, F.; Herczeg, G. J.; Herpin, F.; Hogerheijde, M. R.; Jacq, T.; Johnstone, D.; Jørgensen, J. K.; Kristensen, L. E.; Larsson, B.; Lis, D.; Liseau, R.; Marseille, M.; McCoey, C.; Melnick, G.; Neufeld, D.; Nisini, B.; Olberg, M.; Parise, B.; Pearson, J. C.; Plume, R.; Risacher, C.; Santiago-García, J.; Saraceno, P.; Shipman, R.; Tafalla, M.; van Kempen, T. A.; Visser, R.; Wyrowski, F. doi  openurl
  Title Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L44 (1 to 7)  
  Keywords HEB mixer applications, HIFI, Herschel  
  Abstract The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,- – 1/21,+ ) and CH+(J = 1–0, J = 2–1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1083  
Permanent link to this record
 

 
Author (up) Bujarrabal, V.; Alcolea, J.; Soria-Ruiz, R.; Planesas, P.; Teyssier, D.; Marston, A. P.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.; Quintana-Lacaci, G.; Güsten, R.; Gallego, J. D.; Díez-González, M. C.; Barcia, A.; López-Fernández, I.; Wildeman, K.; Tielens, A. G. G. M.; Jacobs, K. doi  openurl
  Title Herschel/HIFI observations of high-J CO transitions in the protoplanetary nebula CRL 618 Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L3 (1 to 5)  
  Keywords HEB mixer applications, HIFI, Herschel  
  Abstract Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas components in the protoplanetary nebula CRL 618. These components are particularly important for understanding the evolution of the nebula.

Methods. We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL 618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines.

Results. The 12CO J = 16–15, 10–9, and 6–5 lines are easily detected in this source. Both 13CO J = 10–9 and 6–5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in 12CO J = 16–15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km s-1 must have a temperature higher than ~200 K. Probably, this very fast outflow, with a kinematic age <100 yr, has been accelerated by a shock and has not yet cooled down. The double empty shell found from mm-wave mapping must also be relatively hot, in agreement with the previous estimate.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1084  
Permanent link to this record
 

 
Author (up) De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; Monje, R.; Phillips, T. G.; Goicoechea, J. R.; Godard, B.; Falgarone, E.; Coutens, A.; Bell, T. A. doi  openurl
  Title Herschel/HIFI discovery of HCL+ in the interstellar medium Type Journal Article
  Year 2012 Publication Astrophys. J. Lett. Abbreviated Journal  
  Volume 751 Issue 2 Pages L37  
  Keywords HEB mixer applications, HIFI, Herschel  
  Abstract The radical ion HCl+, a key intermediate in the chlorine chemistry of the interstellar gas, has been identified for the first time in the interstellar medium with the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared. The ground-state rotational transition of H35Cl+, 2Π3/2 J = 5/2-3/2, showing Λ-doubling and hyperfine structure, is detected in absorption toward the Galactic star-forming regions W31C (G10.6-0.4) and W49N. The complex interstellar absorption features are modeled by convolving in velocity space the opacity profiles of other molecular tracers toward the same sources with the fine and hyperfine structure of HCl+. This structure is derived from a combined analysis of optical data from the literature and new laboratory measurements of pure rotational transitions, reported in the accompanying Letter by Gupta et al. The models reproduce well the interstellar absorption, and the frequencies inferred from the astronomical observations are in exact agreement with those calculated using spectroscopic constants derived from the laboratory data. The detection of H37Cl+ toward W31C, with a column density consistent with the expected 35Cl/37Cl isotopic ratio, provides additional evidence for the identification. A comparison with the chemically related molecules HCl and H2Cl+ yields an abundance ratio of unity with both species (HCl+ : H2Cl+ : HCl ~ 1). These observations also yield the unexpected result that HCl+ accounts for 3%-5% of the gas-phase chlorine toward W49N and W31C, values several times larger than the maximum fraction (~1%) predicted by chemical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1092  
Permanent link to this record
 

 
Author (up) Decin, L.; Justtanont, K.; De Beck, E.; Lombaert, R.; de Koter, A.; Waters, L. B. F. M.; Marston, A. P.; Teyssier, D.; Schöier, F. L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Dominik, C.; Melnick, G.; Menten, K.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Szczerba, R.; de Graauw, T.; Helmich, F.; Roelfsema, P.; Dieleman, P.; Morris, P.; Gallego, J. D.; Díez-González, M. C.; Caux, E. doi  openurl
  Title Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tauri as seen by Herschel/HIFI Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L4  
  Keywords HEB mixer applications, HIFI, Herschel, line: profiles / radiative transfer / instrumentation: spectrographs / stars: AGB and post-AGB / circumstellar matter / submillimeter: stars  
  Abstract During their asymptotic giant branch evolution, low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of H216O and the rarer isotopologues H217O and H218O in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of $6.6 \times 10^{-5}$, and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of 12CO, 13CO, 28SiO, 29SiO, 30SiO, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized, and we show that the wind acceleration is slower than hitherto anticipated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1090  
Permanent link to this record
 

 
Author (up) Dedes, C.; Röllig, M.; Mookerjea, B.; Okada, Y.; Ossenkopf, V.; Bruderer, S.; Benz, A. O.; Melchior, M.; Kramer, C.; Gerin, M.; Güsten, R.; Akyilmaz, M.; Berne, O.; Boulanger, F.; De Lange, G.; Dubbeldam, L.; France, K.; Fuente, A.; Goicoechea, J. R.; Harris, A.; Huisman, R.; Jellema, W.; Joblin, C.; Klein, T.; Le Petit, F.; Lord, S.; Martin, P.; Martin-Pintado, J.; Neufeld, D. A.; Philipp, S.; Phillips, T.; Pilleri, P.; Rizzo, J. R.; Salez, M.; Schieder, R.; Simon, R.; Siebertz, O.; Stutzki, J.; van der Tak, F.; Teyssier, D.; Yorke, H. doi  openurl
  Title The origin of the [C II] emission in the S140 photon-dominated regions. New insights from HIFI Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L24  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: structure / ISM: kinematics and dynamics / ISM: molecules / photon-dominated region (PDR) / submillimeter: general  
  Abstract Using Herschel's HIFI instrument, we observe C ii along a cut through S140, as well as high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star-forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-Ï„ model for photon-dominated regions (PDRs). We derive the physical conditions in S140 and in particular the origin of C ii emission around IRS1. We identify three distinct regions of C ii emission from the cut, one close to the embedded source IRS1, one associated with the ionization front, and one further into the cloud. The line emission can be understood in terms of a clumpy model of PDRs. At the position of IRS1, we identify at least two distinct components contributing to the [C ii] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the C ii peak at IRS1 coinciding with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be reproduced well by a single-component KOSMA-Ï„ model. Thus, it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity that has allowed us to uncover an additional hot gas component in the S140 region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1091  
Permanent link to this record
 

 
Author (up) Hartogh, P.; Jarchow, C.; Lellouch, E.; de Val-Borro, M.; Rengel, M.; Moreno, R.; Medvedev, A. S.; Sagawa, H.; Swinyard, B. M.; Cavalié, T.; Lis, D. C.; BłÄ™cka, M. I.; Banaszkiewicz, M.; Bockelée-Morvan, D.; Crovisier, J.; Encrenaz, T.; Küppers, M.; Lara, L.-M.; Szutowicz, S.; Vandenbussche, B.; Bensch, F.; Bergin, E. A.; Billebaud, F.; Biver, N.; Blake, G. A.; Blommaert, J. A. D. L.; Cernicharo, J.; Decin, L.; Encrenaz, P.; Feuchtgruber, H.; Fulton, T.; de Graauw, T.; Jehin, E.; Kidger, M.; Lorente, R.; Naylor, D. A.; Portyankina, G.; Sánchez-Portal, M.; Schieder, R.; Sidher, S.; Thomas, N.; Verdugo, E.; Waelkens, C.; Whyborn, N.; Teyssier, D.; Helmich, F.; Roelfsema, P.; Stutzki, J.; LeDuc, H. G.; Stern, J. A. doi  openurl
  Title Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2 Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L49  
  Keywords HEB mixer applications, HIFI, Herschel, planets and satellites: atmospheres / radiative transfer / submillimeter: general / molecular processes  
  Abstract We report on an initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H2O2), and molecular oxygen (O2) in the Martian atmosphere performed on 13 and 16 April 2010 (Ls ~ 77°). We derived a constant volume mixing ratio of 1400 ± 120 ppm for O2 and determined upper limits of 200 ppt for HCl and 2 ppb for H2O2. Radiative transfer model calculations indicate that the vertical profile of O2 may not be constant. Photochemical models determine the lowest values of H2O2 to be around Ls ~ 75° but overestimate the volume mixing ratio compared to our measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1093  
Permanent link to this record
 

 
Author (up) Joblin, C.; Pilleri, P.; Montillaud, J.; Fuente, A.; Gerin, M.; Berné, O.; Ossenkopf, V.; Le Bourlot, J.; Teyssier, D.; Goicoechea, J. R.; Le Petit, F.; Röllig, M.; Akyilmaz, M.; Benz, A. O.; Boulanger, F.; Bruderer, S.; Dedes, C.; France, K.; Güsten, R.; Harris, A.; Klein, T.; Kramer, C.; Lord, S. D.; Martin, P. G.; Martin-Pintado, J.; Mookerjea, B.; Okada, Y.; Phillips, T. G.; Rizzo, J. R.; Simon, R.; Stutzki, J.; van der Tak, F.; Yorke, H. W.; Steinmetz, E.; Jarchow, C.; Hartogh, P.; Honingh, C. E.; Siebertz, O.; Caux, E.; Colin, B. doi  openurl
  Title Gas morphology and energetics at the surface of PDRs: New insights with Herschel observations of NGC 7023 Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L25  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: structure / ISM: kinematics and dynamics / ISM: molecules / submillimeter: ISM  
  Abstract Context. We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field.

Aims. Using Herschel/HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel.

Methods. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 μm (1901 GHz) [C ii] line measured by HIFI and provide information on the emitting gas.

Results. We show that both the [C ii] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [C ii] intensities.

Conclusions. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [O i] and use of a new PDR model that includes PAH-related species.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1095  
Permanent link to this record
 

 
Author (up) Justtanont, K.; Decin, L.; Schöier, F. L.; Maercker, M.; Olofsson, H.; Bujarrabal, V.; Marston, A. P.; Teyssier, D.; Alcolea, J.; Cernicharo, J.; Dominik, C.; de Koter, A.; Melnick, G.; Menten, K.; Neufeld, D.; Planesas, P.; Schmidt, M.; Szczerba, R.; Waters, R.; de Graauw, Th.; Whyborn, N.; Finn, T.; Helmich, F.; Siebertz, O.; Schmülling, F.; Ossenkopf, V.; Lai, R. doi  openurl
  Title A HIFI preview of warm molecular gas around χ Cygni: first detection of H2O emission toward an S-type AGB star Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L6  
  Keywords HEB mixer applications, HIFI, Herschel, stars: AGB and post-AGB / circumstellar matter / stars: kinematics and dynamics / stars: individual: χ Cyg / stars: late-type / stars: mass-loss  
  Abstract Aims. A set of new, sensitive, and spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star χ Cyg. The observed lines involve high rotational quantum numbers, which, combined with previously obtained lower-frequency data, make it possible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of χ Cyg.

Methods. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope.

Results. We report the first detection of circumstellar H2O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho- and para-H2O lines. Our modelling results are consistent with the velocity structure expected for a dust-driven wind. The derived total H2O abundance (relative to H2) is (1.1±0.2) × 10-5, much lower than that in O-rich stars. The derived ortho-to-para ratio of 2.1±0.6 is close to the high-temperature equilibrium limit, consistent with H2O being formed in the photosphere.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1096  
Permanent link to this record
 

 
Author (up) Mookerjea, B.; Giesen, T.; Stutzki, J.; Cernicharo, J.; Goicoechea, J. R.; De Luca, M.; Bell, T. A.; Gupta, H.; Gerin, M.; Persson, C. M.; Sonnentrucker, P.; Makai, Z.; Black, J.; Boulanger, F.; Coutens, A.; Dartois, E.; Encrenaz, P.; Falgarone, E.; Geballe, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Ka<c5><ba>mierczak, M.; Kołos, R.; Krełowski, J.; Lis, D. C.; Martin-Pintado, J.; Menten, K. M.; Monje, R.; Pearson, J. C.; Perault, M.; Phillips, T. G.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Teyssier, D.; Vastel, C.; Yu, S.; Dieleman, P.; Güsten, R.; Honingh, C. E.; Morris, P.; Roelfsema, P.; Schieder, R.; Tielens, A. G. G. M.; Zmuidzinas, J. doi  openurl
  Title Excitation and abundance of C3 in star forming cores. Herschel/HIFI observations of the sight-lines to W31C and W49N Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal  
  Volume 521 Issue Pages L13  
  Keywords HEB mixer applications, HIFI, Herschel, ISM: lines and bands / ISM: molecules / radiative transfer / ISM: individual objects: W49N / ISM: individual objects: W31C  
  Abstract We present spectrally resolved observations of triatomic carbon (C3) in several ro-vibrational transitions between the vibrational ground state and the low-energy ν2 bending mode at frequencies between 1654–1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (Trot) of ~50-70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived Trot, we get column densities N(C3) ~ 7–9 × 1014 cm-2 and abundance x(C3) ~ 10-8 with respect to H2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C3) = 10-8, Tkin = 30–50 K, N(C3) = 1.5 × 1015 cm-2 fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1099  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: