toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title Fabrication and characterisation of NbN HEB mixers with in situ gold contacts Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 62-67  
  Keywords HEB, mixer, NbN, in-situ contacts  
  Abstract We present our recent results of the fabrication and testing of NbN hot-electron bolometer mixers with in situ gold contacts. An intermediate frequency bandwidth of about 6 GHz has been measured for the mixers made of a 3.5-nm NbN film on a plane Si substrate with in situ gold contacts, compared to 3.5 GHz for devices made of the same film with ex situ gold contacts. The increase in the intermediate frequency bandwidth is attributed to additional diffusion cooling through the improved contacts, which is further supported by the its dependence on the bridge length: intermediate frequency bandwidths of 3.5 GHz and 6 GHz have been measured for devices with lengths of 0.35 μm and 0.16 μm respectively at a local oscillator frequency of 300 GHz near the superconducting transition. At a local oscillator frequency of 2.5 THz the receiver has offered a DSB noise temperature of 950 K. When compared to the previous result of 1300 K obtained at the same local oscillator frequency for devices fabricated with an ex situ route, such a low value of the noise temperature may also be attributed to the improved gold contacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 412  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages 151-154  
  Keywords HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 590  
Permanent link to this record
 

 
Author Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N. openurl 
  Title NbN HEB mixer: fabrication, noise temperature reduction and characterization Type Conference Article
  Year 2008 Publication Proc. Basic problems of superconductivity Abbreviated Journal  
  Volume Issue Pages  
  Keywords HEB, mixer, noise temperature, conversion gain bandwidth  
  Abstract We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow-Zvenigorod Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 591  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. doi  openurl
  Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
  Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 52 Issue 8 Pages 576-582  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 599  
Permanent link to this record
 

 
Author Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M. url  doi
openurl 
  Title Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
  Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal  
  Volume Issue Pages 1-1  
  Keywords SSPD, SNSPD, HEB  
  Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-2027 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. doi  openurl
  Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 109 Issue 13 Pages 132602  
  Keywords HEB mixer, contacts  
  Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1107  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Petrenko, D.; Tretyakov, I.; Ryabchun, S.; Finkel, M.; Kaurova, N.; Gol’tsman, G.; Risacher, C.; Ricken, O.; Güsten, R. url  openurl
  Title Optimization of the intermediate frequency bandwidth in the THz HEB mixers Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 54  
  Keywords NbN HEB mixer  
  Abstract We report on the studies of the intermediate frequency (IF) bandwidth of quasi-optically coupled NbN hot-electron bolometer (HEB) mixers which are aimed at the optimization of the mixer performance at terahertz frequencies. Extension of the IF bandwidth due to the contribution of electron diffusion to the heat removal from NbN microbolometers has been already demonstrated for NbN HEBs at subterahertz frequencies. However, reducing the size of the microbolometer causes degradation of the noise temperature. Using in-situ multilayer manufacturing process we succeeded to improve the transparency of the contacts for electrons which go away from microbolometer to the metallic antenna. The improved transparency and hence coupling efficiency counterbalances the noise temperature degradation. HEB mixers were tested in a laboratory heterodyne receiver with a narrow-band cold filter which allowed us to eliminate direct detection. We used a local oscillator with a quantum cascade laser (QCL) at a frequency of 4.745 THz [1] which was developed for the H-Channel of the German Receiver for Astronomy at Terahertz frequencies (GREAT). Both the noise and gain bandwidth were measured in the IF range from 0.5 to 8 GHz using the hot-cold technique and preliminary calibrated IF analyzer with a tunable microwave filter. For optimized HEB geometry we found the noise bandwidth as large as 7 GHz. We compare our results with the conventional and the hot-spot mixer models and show that further extension of the IF bandwidth should be possible via improving the sharpness of the superconducting transition. The cross characterization of the HEB mixer was performed in the test bed of GREAT at the Max-Planck-Institut für Radioastronomie with the same QCL LO and delivered results which were consistent with the laboratory studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1359  
Permanent link to this record
 

 
Author Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; Watanabe, K.; Grigorieva, I. V.; Polini, M.; Goltsman, G. N.; Geim, A. K.; Fedorov, G. doi  openurl
  Title Resonant terahertz detection using graphene plasmons Type Journal Article
  Year 2018 Publication Nat. Commun. Abbreviated Journal Nat. Commun.  
  Volume 9 Issue Pages 5392 (1 to 8)  
  Keywords THz, graphene plasmons  
  Abstract Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.  
  Address Physics Department, Moscow State University of Education (MSPU), Moscow, Russian Federation, 119435. fedorov.ge@mipt.ru  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1148  
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  doi
openurl 
  Title Room temperature silicon detector for IR range coated with Ag2S quantum dots Type Journal Article
  Year 2019 Publication Phys. Status Solidi RRL Abbreviated Journal Phys. Status Solidi RRL  
  Volume 13 Issue 9 Pages 1900187-(1-6)  
  Keywords  
  Abstract For decades, silicon has been the chief technological semiconducting material of modern microelectronics and has a strong influence on all aspects of the society. Applications of Si-based optoelectronic devices are limited to the visible and near infrared (IR) ranges. For photons with an energy less than 1.12 eV, silicon is almost transparent. The expansion of the Si absorption to shorter wavelengths of the IR range is of considerable interest for optoelectronic applications. By creating impurity states in Si, it is possible to cause sub-bandgap photon absorption. Herein, an elegant and effective technology of extending the photo-response of Si toward the IR range is presented. This approach is based on the use of Ag 2 S quantum dots (QDs) planted on the surface of Si to create impurity states in the Si bandgap. The specific sensitivity of the room temperature zero-bias Si_Ag 2 Sp detector is 10 11 cm Hz W 1 at 1.55 μm. Given the variety of available QDs and the ease of extending the photo-response of Si toward the IR range, these findings open a path toward future studies and development of Si detectors for technological applications. The current research at the interface of physics and chemistry is also of fundamental importance to the development of Si optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1149  
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  isbn
openurl 
  Title Silicon room temperature IR detectors coated with Ag2S quantum dots Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO  
  Volume Issue Pages 369-371  
  Keywords silicon detector, quantum dot, IR, surface states  
  Abstract For decades silicon has been the chief technological semiconducting material of modern microelectronics. Application of silicon detectors in optoelectronic devices are limited to the visible and near infrared ranges, due to their transparency for radiation with a wavelength higher than 1.1 μm. The expansion Si absorption towards longer wave lengths is a considerable interest to optoelectronic applications. In this work we present an elegant and effective solution to this problem using Ag2S quantum dots, creating impurity states in Si to cause sub-band gap photon absorption. The sensitivity of room temperature zero-bias Si_Ag2S detectors, which we obtained is 1011 cmHzW . Given the variety of QDs parameters such as: material, dimensions, our results open a path towards the future study and development of Si detectors for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-89513-451-1 Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1154  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: