|   | 
Details
   web
Records
Author Verevkin, A.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsina, N. G.; Chulkova, G. M.; Smirnov, K. S.; Sobolewski, R.
Title Direct measurements of energy relaxation times in two-dimensional structures under quasi-equilibrium conditions Type Conference Article
Year 2002 Publication Mater. Sci. Forum Abbreviated Journal Mater. Sci. Forum
Volume 384-3 Issue Pages 107-116
Keywords 2DEG, AlGaAs/GaAs
Abstract A new microwave technique was successfully applied for direct studies of energy relaxation times in two-dimensional AlGaAs/GaAs structures under quasi-equilibrium conditions in the nanosecond and picosecond time scale. We report our results of energy relaxation time measurements in the temperature range 1.6-50 K, in quantum Hall effect regime in magnetic fields up to 4 T.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference Materials Science Forum
Notes Approved no
Call Number Serial 1536
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N.
Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 462-468
Keywords NbN SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1539
Permanent link to this record
 

 
Author Xu, Y.; Zheng, X.; Williams, C.; Verevkin, A.; Sobolewski, R.; Chulkova, G.; Lipatov, A.; Okunev, O.; Smirnov, K.; Gol’tsman, G. N.
Title Ultrafast superconducting hot-electron single-photon detector Type Conference Article
Year 2001 Publication CLEO Abbreviated Journal CLEO
Volume Issue Pages 345
Keywords NbN SSPD, SNSPD
Abstract Summary form only given. The current most-pressing need is to develop a practical, GHz-range counting single-photon detector, operational at either 1.3-/spl mu/m or 1.55-/spl mu/m radiation wavelength, for novel quantum communication and quantum cryptography systems. The presented solution of the problem is to use an ultrafast hot-electron photodetector, based on superconducting thin-film microstructures. This type of device is very promising, due to the macroscopic quantum nature of superconductors. Very fast response time and the small, (meV range) value of the superconducting energy gap characterize the superconductor, leading to the efficient avalanche process even for infrared photons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170)
Notes Approved no
Call Number Serial 1545
Permanent link to this record
 

 
Author Schwaab, G. W.; Hübers, H.-W.; Schubert, J.; Erichsen, Patrik; Gol'tsman, G.; Semenov, A.; Verevkin, A.; Cherednichenko, S.; Gershenzon, E.
Title A high resolution spectrometer for the investigation of molecular structures in the THZ range Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 530-538
Keywords antireflection coatings, dielectric mirrors
Abstract A status report on the design study of a novel tunable far-infrared (TuFTR) spectrometer for the investigation of the structure of weakly bound molecular complexes is given. The goal is a sensitive TuFIR spectrometer with full frequency coverage from 1-6 THz. To hit the goal, advanced sources (e.g. p-Ge lasers) and detectors (e.g. superconducting hot electron bolometric (HEB) mixers) shall be employed to extend the technique of cavity ringdown spectroscopy, that is currently used at optical and infrared frequencies to the FIR spectral range. Critical for such a system are high-Q resonators that still allow good optical coupling, and wideband antireflection coatings to increase detector sensitivity and decrease optical path losses. 2 nd order effective media theory and an iterative multilayer algorithm have been employed to design wideband antireflection coatings for dielectrics with large dielectric constants like Ge or Si. Taking into account 6 layers, for Si bandwidths of 100% of the center frequency could be obtained with power reflectivities below 1% for both polarizations simultaneously. Wideband dielectric mirrors including absorption losses were also studied yielding a bandwidth of about 50% with reflectivities larger than 99.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1577
Permanent link to this record
 

 
Author Svechnikov, S.; Verevkin, A.; Voronov, B.; Menschikov, E.; Gershenzon, E.; Gol'tsman, G.
Title Quasioptical phonon-cooled NbN hot electron bolometer mixers at 0.5-1.1 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 45-51
Keywords NbN HEB mixers
Abstract The noise performance of a receiver incorporating spiral antenna coupled NbN phonon-cooled superconducting hot electron bolometric mixer is measured from 450 GHz to 1200 GHz. The mixer element is thin (thickness nm) NbN 1.5 pm wide and 0.2 i.um long film fabricated by lift-off e-beam lithography on high-resistive silicon substrate. The noise of the receiver temperature is 1000 K at 800-900 GHz, 1200 K at 950 GHz, and 1600 K at 1.08 THz. The required (absorbed) local-oscillator power is —20 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1586
Permanent link to this record