toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M. url  openurl
  Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages CThM8  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors  
  Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1517  
Permanent link to this record
 

 
Author Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4233-4236  
  Keywords NbN HEB mixers  
  Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 550  
Permanent link to this record
 

 
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G. url  doi
openurl 
  Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type Miscellaneous
  Year 2001 Publication OFCC/ICQI Abbreviated Journal OFCC/ICQI  
  Volume Issue Pages Pa3  
  Keywords NbN SSPD, SNSPD, QKD, quantum cryptography  
  Abstract We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.  
  Address Rochester, New York  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information  
  Notes -- from poster session. Approved no  
  Call Number Serial 1544  
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Goltsman, G. N.; Verevkin, A. A.; Toropov, A. I.; Mauskopf, P. url  doi
openurl 
  Title Concentration dependence of energy relaxation time in AlGaAs/GaAs heterojunctions: direct measurements Type Journal Article
  Year 2011 Publication Semicond. Sci. Technol. Abbreviated Journal Semicond. Sci. Technol.  
  Volume 26 Issue 2 Pages 025013  
  Keywords AlGaAs/GaAs heterojunctions  
  Abstract We present measurements of the energy relaxation time, τε, of electrons in a single heterojunction in a quasi-equilibrium state using microwave time-resolved spectroscopy at 4.2 K. We find the relaxation time has a power-law dependence on the carrier density of the two-dimensional electron gas, τε∝nγs with γ = 0.40 ± 0.02 for values of the carrier density, ns, from 1.6 × 1011 to 6.6 × 1011cm−2. The results are in good agreement with predictions taking into account the scattering of the carriers by both piezoelectric and deformation potential acoustic phonons. We compare these results with indirect measurements of the energy relaxation time from energy loss measurements involving Joule heating of the electron gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1215  
Permanent link to this record
 

 
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol'tsman, G. openurl 
  Title One-dimensional resistive states in quasi-two-dimensional superconductors Type Journal Article
  Year 2007 Publication arXiv:0709.0709v1 [cond-mat.supr-con] Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords  
  Abstract We investigate competition between one- and two-dimensional topological excitations – phase slips and vortices – in formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature T(C0). The widths w = 100 nm of our ultrathin NbN samples is substantially larger than the Ginzburg-Landau coherence length ξ = 4nm and the fluctuation resistivity above T(C0) has a two-dimensional character. However, our data shows that the resistivity below T(C0) is produced by one-dimensional excitations, – thermally activated phase slip strips (PSSs) overlapping the sample cross-section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current/temperature variations. Measuring the resistivity within seven orders of magnitude, we find that the quantum phase slips can only be essential below this level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 948  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: