toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G. url  doi
openurl 
  Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type (down) Miscellaneous
  Year 2001 Publication OFCC/ICQI Abbreviated Journal OFCC/ICQI  
  Volume Issue Pages Pa3  
  Keywords NbN SSPD, SNSPD, QKD, quantum cryptography  
  Abstract We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.  
  Address Rochester, New York  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information  
  Notes -- from poster session. Approved no  
  Call Number Serial 1544  
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Papis, E.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R. url  openurl
  Title A method of optimization of the NbN superconducting single-photon detector Type (down) Miscellaneous
  Year 2004 Publication INIS Abbreviated Journal INIS  
  Volume 36 Issue 27 Pages 1-2  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 5-th International Symposium Ion Implantation and Other Applications of Ions and Electrons, ION  
  Notes Reference num. 36060124 Approved no  
  Call Number Serial 1485  
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G. url  openurl
  Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type (down) Miscellaneous
  Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no  
  Call Number Serial 1751  
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R. doi  openurl
  Title Superconducting single-photon ultrathin NbN film detector Type (down) Journal Article
  Year 2005 Publication Quantum Electronics Abbreviated Journal  
  Volume 35 Issue 8 Pages 698-700  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no  
  Call Number Serial 383  
Permanent link to this record
 

 
Author Sobolewski, R.; Verevkin, A.; Gol'tsman, G.N.; Lipatov, A.; Wilsher, K. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors and their applications Type (down) Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages 1151-1157  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of ultrafast single-photon detectors for counting both visible and infrared photons. The detection mechanism is based on photon-induced hotspot formation, which forces the supercurrent redistribution and leads to the appearance of a transient resistive barrier across an ultrathin, submicrometer-width, superconducting stripe. The devices were fabricated from 3.5-nm- and 10-nm-thick NbN films, patterned into <200-nm-wide stripes in the 4 /spl times/ 4-/spl mu/m/sup 2/ or 10 /spl times/ 10-/spl mu/m/sup 2/ meander-type geometry, and operated at 4.2 K, well below the NbN critical temperature (T/sub c/=10-11 K). Continuous-wave and pulsed-laser optical sources in the 400-nm-to 3500-nm-wavelength range were used to determine the detector performance in the photon-counting mode. Experimental quantum efficiency was found to exponentially depend on the photon wavelength, and for our best, 3.5-nm-thick, 100-/spl mu/m/sup 2/-area devices varied from >10% for 405-nm radiation to 3.5% for 1550-nm photons. The detector response time and jitter were /spl sim/100 ps and 35 ps, respectively, and were acquisition system limited. The dark counts were below 0.01 per second at optimal biasing. In terms of the counting rate, jitter, and dark counts, the NbN single-photon detectors significantly outperform their semiconductor counterparts. Already-identified applications for our devices range from noncontact testing of semiconductor CMOS VLSI circuits to free-space quantum cryptography and communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 509  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: