|   | 
Details
   web
Records
Author Dauler, E. A.; Kerman, A. J.; Robinson, B. S.; Yang, J. K. W.; Voronov, B. M.; Gol’tsman, G. N.; Berggren, K. K.
Title Achieving high counting rates in superconducting nanowire single-photon detectors Type Conference Article
Year 2006 Publication (up) CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages JTuD3 (1 to 2)
Keywords SSPD; SNSPD; Detectors; Photodetectors; Quantum optics; Quantum detectors; Photon counting; Photons; Pulse shaping; Quantum communications; Single photon detectors; Superconductors
Abstract Kinetic inductance is determined to be the primary limitation to the counting rate of superconducting nanowire single-photon counters. Approaches for overcoming this limitation will be discussed.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies
Notes Approved no
Call Number Serial 1451
Permanent link to this record
 

 
Author Rosfjord, K. M.; Yang, J. K. W.; Dauler, E. A.; Anant, V.; Berggren, K. K.; Kerman, A. J.; Voronov, B. M.; Gol’tsman, G. N.
Title Increased detection efficiencies of nanowire single-photon detectors by integration of an optical cavity and anti-reflection coating Type Conference Article
Year 2006 Publication (up) CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages JTuF2 (1 to 2)
Keywords SSPD, SNSPD
Abstract We fabricate and test superconducting NbN-nanowire single-photon detectors with an integrated optical cavity and anti-reflection coating. We design the cavity and coating such as to maximize absorption in the NbN film of the detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1452
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
Year 2015 Publication (up) EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10004 (1 to 2)
Keywords SSPD, SNSPD
Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1351
Permanent link to this record
 

 
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
Year 2015 Publication (up) EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10003 (1 to 2)
Keywords graphene field-effect transistor, FET
Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1350
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, Heinz-Wilhelm; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Vachtomin, Yu. B.; Finkel, M. I.; Antipov, S. V.; Voronov, B. M.; Smirnov, K. V.; Kaurova, N. S.; Drakinski, V. N.; Gol'tsman, G. N.
Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Journal Article
Year 2003 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 13 Issue 2 Pages 168-171
Keywords NbN HEB mixers
Abstract We present recent results showing the development of superconducting NbN hot-electron bolometer mixer for German receiver for astronomy at terahertz frequencies and terahertz limb sounder. The mixer is incorporated into a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and backed on a silicon lens. The hybrid antenna had almost frequency independent and symmetric radiation pattern slightly broader than expected for a diffraction limited antenna. At 2.5 THz the best 2200 K double side-band receiver noise temperature was achieved across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. For this operation regime, a receiver conversion efficiency of -17 dB was directly measured and the loss budget was evaluated. The mixer response was linear at load temperatures smaller than 400 K. Implementation of the MgO buffer layer on Si resulted in an increased 5.2 GHz gain bandwidth. The receiver was tested in the laboratory environment by measuring a methanol emission line at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 343
Permanent link to this record