|   | 
Details
   web
Records
Author Ryabchun, S.; Smirnov, A.; Pentin, I.; Vakhtomin, Yu.; Smirnov, K.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Superconducting single photon detector integrated with optical cavity Type Conference Article
Year 2011 Publication Proc. MLPLIT Abbreviated Journal Proc. MLPLIT
Volume Issue Pages 143-145
Keywords NbN SSPD, cavity
Abstract
Address (down) Suzdal / Vladimir (Russia)
Corporate Author Thesis
Publisher Modern laser physics and laser-information technologies for science and manufacture Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 1st international russian-chinese conference / youthschool-workshop
Notes September 23-28, 2011 Approved no
Call Number Serial 1385
Permanent link to this record
 

 
Author Maslennikova, A.; Larionov, P.; Ryabchun, S.; Smirnov, A.; Pentin, I.; Vakhtomin, Yu.; Smirnov, K.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Noise equivalent power and dynamic range of NBN hot-electron bolometers Type Conference Article
Year 2011 Publication Proc. MLPLIT Abbreviated Journal Proc. MLPLIT
Volume Issue Pages 146-148
Keywords NbN HEB
Abstract
Address (down) Suzdal / Vladimir (Russia)
Corporate Author Thesis
Publisher Modern laser physics and laser-information technologies for science and manufacture Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 1st international russian-chinese conference / youthschool-workshop
Notes September 23-28, 2011 Approved no
Call Number Serial 1386
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal Proc. 6th European Conf. Appl. Supercond.
Volume 181 Issue Pages 2960-2965
Keywords NbN HEB mixers
Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.
Address (down) Sorrento, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0750309814, 978-0750309813 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1505
Permanent link to this record
 

 
Author Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S.
Title Hot electron mixers for THz applications Type Conference Article
Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal Proc. 30th ESLAB
Volume Issue Pages 207-210
Keywords NbN HEB mixers
Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.
Address (down) Noordwijk, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor Rolfe, E. J.; Pilbratt, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Submillimetre and Far-Infrared Space Instrumentation
Notes Approved no
Call Number Serial 1606
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G.
Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep
Volume 7 Issue 1 Pages 4812
Keywords waveguide, SSPD, SNSPD
Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.
Address (down) National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28684752; PMCID:PMC5500578 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1129
Permanent link to this record