|   | 
Details
   web
Records
Author Seliverstov, S.; Maslennikov, S.; Ryabchun, S.; Finkel, M.; Klapwijk, T. M.; Kaurova, N.; Vachtomin, Yu.; Smirnov, K.; Voronov, B.; Goltsman, G.
Title Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300304
Keywords HEB detector responsivity, HEB model, numerical calculations, numerical model
Abstract We characterize superconducting antenna-coupled hot-electron bolometers for direct detection of terahertz radiation operating at a temperature of 9.0 K. The estimated value of responsivity obtained from lumped-element theory is strongly different from the measured one. A numerical calculation of the detector responsivity is developed, using the Euler method, applied to the system of heat balance equations written in recurrent form. This distributed element model takes into account the effect of nonuniform heating of the detector along its length and provides results that are in better agreement with the experiment. At a signal frequency of 2.5 THz, the measured value of the optical detector noise equivalent power is 2.0 × 10-13 W · Hz-0.5. The value of the bolometer time constant is 35 ps. The corresponding energy resolution is about 3 aJ. This detector has a sensitivity similar to that of the state-of-the-art sub-millimeter detectors operating at accessible cryogenic temperatures, but with a response time several orders of magnitude shorter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 953
Permanent link to this record
 

 
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R.
Title Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 574-577
Keywords NbN SSPD, SNSPD
Abstract A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1547
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G.
Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 495-498
Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model
Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 980
Permanent link to this record
 

 
Author Gol’tsman, G.; Korneev, A.; Tarkhov, M.; Seleznev, V.; Divochiy, A.; Minaeva, O.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.
Title Middle-infrared ultrafast superconducting single photon detector Type Conference Article
Year 2007 Publication 32nd IRMW / 15th ICTE Abbreviated Journal 32nd IRMW / 15th ICTE
Volume Issue Pages 115-116
Keywords SSPD, SNSPD
Abstract We present the results of the research on quantum efficiency of the ultrathin-film superconducting single-photon detectors (SSPD) in the wavelength rage from 1 mum to 5.7 mum. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of ~1 % at 5.7 mum wavelength with the SSPD made from 4-nm-thick NbN film. In a pursuit of further performance improvement we endeavored SSPD fabricating from 4-nm-thick MoRe film as an alternative material. The MoRe film exhibited transition temperature of 7.7K, critical current density at 4.2 K temperature was 1.1times10 6 A/cm 2 , and diffusivity 1.73 cmVs. The single-photon response was observed with MoRe SSPD at 1.3 mum wavelength with quantum efficiency estimated to be 0.04%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1246
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol'tsman, G.
Title New advanced generation of superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue Pages 012307 (1 to 6)
Keywords PNR SSPD; SNSPD
Abstract We present our latest generation of ultrafast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). We have developed, fabricated and tested a multi-sectional design of NbN nanowire structures. The novel SSPD structures consist of several meander sections connected in parallel, each having a resistor connected in series. The novel SSPDs combine 10 μm × 10 μm active areas with a low kinetic inductance and PNR capability. That resulted in a significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector's response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performances of the PNR SSPDs. The PNR SSPDs are perfectly suited for fibreless free-space telecommunications, as well as for ultrafast quantum cryptography and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Serial 1245
Permanent link to this record