toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. url  openurl
  Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI  
  Volume 9 Issue Pages 154-159  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 547  
Permanent link to this record
 

 
Author Meledin, Denis; Pavolotsky, Alexey; Desmaris, Vincent.; Lapkin, Igor; Risacher, Christophe; Perez, Victor; Henke, Douglas; Nystrom, Olle; Sundin, Erik; Dochev, Dimitar; Pantaleev, Miroslav; Fredrixon, Mathias; Strandberg, Magnus; Voronov, Boris; Goltsman, Gregory; Belitsky, Victor url  doi
openurl 
  Title A 1.3-THz balanced waveguide HEB mixer for the APEX telescope Type Journal Article
  Year 2009 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 57 Issue 1 Pages 89-98  
  Keywords HEB, mixer, waveguide, balanced, NbN  
  Abstract In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25–1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90×180 μm). We present details on the mixer design and measurement results, including receiver noise performance, stability and “first-light” at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 554  
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene url  openurl
  Title First light with an 800 GHz phonon-cooled HEB mixer receiver Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 35-43  
  Keywords HEB, mixer, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract Phonon-cooled superconductive hot-electron bolometric (HEB) mixers are incorporated in a waveguide receiver designed to operate near 800 Gliz. The mixer elements are thin-film nio- bium nitride microbridges with dimensions of 4 nm thickness, 0.2 to 0.3 p.m in length and 2 jun in width. At 780 GHz the best receiver noise temperature is 840 K (DSB). The mixer IF bandwidth is 2.0 GHz, the absorbed LO power is —0.1 1.1W. A fixed-tuned version of the re- ceiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, Arizona, to conduct astronomical observations. These observations represent the first time that a receiver incorporating any superconducting HEB mixer has been used to detect a spectral line of celes- tial origin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, California, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 572  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
  Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 98 Issue Pages 033507 (1 to 3)  
  Keywords NbN HEB mixer  
  Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 638  
Permanent link to this record
 

 
Author Maslennikova, Anna; Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Kaurova, Natalia; Voronov, Boris; Gol’tsman, Gregory url  openurl
  Title Gain bandwidth and noise temperature of NbN HEB mixers with simultaneous phonon and diffusion cooling Type Abstract
  Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 21th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 218-219  
  Keywords  
  Abstract The space observatory Millimetron will be operating in the millimeter, sub-millimeter and infrared ranges using a 12-m cryogenic telescope in a single-dish mode, and as an interferometer with the space-earth and space-space baselines (the latter after the launch of the second identical space telescope). The observatory will allow performing astronomical observations with an unprecedented sensitivity (down to nJy level) in the single-dish mode, and observations with a high angular resolution in the interferometer mode. The total spectral range 20 μm – 2 cm is separated into 10 bands. HEB mixers with two cooling channels (diffusion and phonon) have been chosen to be the detectors of choice of the system covering the range from 1 THz to 6 THz as the best detectors in terahertz receivers. This type of HEB has already shown good work in the terahertz range. A gain bandwidth of 6 GHz at an LO frequency of 300 GHz and a noise temperature of 750 K at an LO frequency of 2.5 THz are the best values for HEB mixers with two cooling channels [1]. Theoretical estimations predict a bandwidth up to 12 GHz. Reaching such good result demands more systematic and thorough research. We present the results of the gain bandwidth and noise temperature measurements for superconducting hot- electron bolometer mixers with two cooling channels. These characteristics of the devices of lengths varying from 50 to 200 nm were measured for the purposes of Millimetron at frequencies of 600 GHz, 2.5 THz, and 3.8 THz. For gain bandwidth measurements we use two BWO’s operating at 600 GHz: one as the signal and the second as the LO. The noise temperature measurements were performed using a gas discharge laser as the LO and blackbodies at 77 K and 295 K as input signals. The devices studied consist of 3.5-nm-thick NbN bridges connected to thick (10 nm) high conductivity Au leads fabricated in situ. This method of fabricating devices has already proved promising by opening the diffusion cooling channel. [2] Fig. 1 shows a SEM photograph of a log-spiral antenna with an HEB at its apex. Fig. 1. Left: a SEM photograph of a log-spiral antenna with an HEB at its apex; right: a close-up of the HEB at the antenna apex. [1] S. A. Ryabchun, I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov, and G. N. Gol’tsman, NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling, Proc. of the 20 th Int. Symp. Space. Technol., Charlottesville, Virginia, USA, April 20 – 22, 2009. 218[2] S. A. Ryabchun * , I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov and G. N. Goltsman, Fabrication and characterisation of NbN HEB mixers with in situ gold contacts, Proc. of the 19 th Int. Symp. Space. Technol., Groningen, The Netherlands, April 28-30, 2008  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number Serial 1393  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: