Records |
Author |
Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M. |
Title |
Optical mixing in a patterned YBa2Cu3O7-δ thin film |
Type |
Journal Article |
Year |
1994 |
Publication |
Appl. Phys. Lett. |
Abbreviated Journal |
Appl. Phys. Lett. |
Volume |
65 |
Issue |
26 |
Pages |
3398-3400 |
Keywords |
YBCO HTS HEB mixer, bandwidth |
Abstract |
Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0003-6951 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
251 |
Permanent link to this record |
|
|
|
Author |
Cherednichenko, S.; Rönnung, F.; Gol'tsman, G.; Kollberg, E.; Winkler, D. |
Title |
YBa2Cu3O7−δ hot-electron bolometer mixer |
Type |
Journal Article |
Year |
2000 |
Publication |
Phys. C: Supercond. |
Abbreviated Journal |
Phys. C: Supercond. |
Volume |
341-348 |
Issue |
|
Pages |
2653-2654 |
Keywords |
YBCO HTS HEB mixers |
Abstract |
We present an investigation of hot-electron bolometric mixer based on YBa2Cu3O7−δ (YBCO) superconducting thin film. Mixer conversion loss, absorbed local oscillator power and intermediate frequency bandwidth was measured at the local oscillator frequency 600 GHz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated into planar antenna structure is described. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0921-4534 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1552 |
Permanent link to this record |
|
|
|
Author |
Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N. |
Title |
A nanoscale YBCO mixer optically coupled with a bow tie antenna |
Type |
Journal Article |
Year |
1999 |
Publication |
Supercond. Sci. Technol. |
Abbreviated Journal |
Supercond. Sci. Technol. |
Volume |
12 |
Issue |
11 |
Pages |
853-855 |
Keywords |
YBCO HTS HEB mixers |
Abstract |
The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0953-2048 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1563 |
Permanent link to this record |
|
|
|
Author |
Trifonov, V. A.; Karasik, B. S.; Zorin, M. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Lindgren, M.; Danerud, M.; Winkler, D. |
Title |
9.6 μm wavelength mixing in a patterned YBa2Cu3O7‐δ thin film |
Type |
Journal Article |
Year |
1996 |
Publication |
Appl. Phys. Lett. |
Abbreviated Journal |
Appl. Phys. Lett. |
Volume |
68 |
Issue |
10 |
Pages |
1418-1420 |
Keywords |
YBCO HTS HEB mixers |
Abstract |
Hot‐electron bolometric (HEB) mixing of 9.6 μm infrared radiation from two lasers in high‐quality YBa2Cu3O7−δ (YBCO) patterned thin film has been demonstrated. A heterodyne measurement showed an intermediate frequency (IF) bandwidth of 18 GHz, limited by our measurement system. An intrinsic limit of 100 GHz is predicted. Between 0.1 and 1 GHz intermediate frequency, temperature fluctuations with an equivalent output noise temperature Tfl up to ∼150 K, contributed to the mixer noise while Johnson noise dominated above 1 GHz. The overall conversion loss at 77 K at low intermediate frequencies was measured to be ∼25 dB, of which 13 dB was due to the coupling loss. The HEB mixer is very promising for use in heterodyne receivers within the whole infrared range. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0003-6951 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1613 |
Permanent link to this record |
|
|
|
Author |
Zorin, M.; Gol'tsman, G.N.; Karasik, B.S.; Elantev, A.I.; Gershenzon, E.M.; Lindgren, M.; Danerud, M.; Winkler, D. |
Title |
Optical mixing in thin YBa2Cu3O7-x films |
Type |
Journal Article |
Year |
1995 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
5 |
Issue |
2 |
Pages |
2431-2434 |
Keywords |
YBCO HTS HEB mixers |
Abstract |
High quality, j/sub c/ (77 K)>10/sup 6/ A/cm/sup 2/, epitaxial YBa2Cu3O7-x films of 50 nm thickness were patterned into ten parallel 1 /spl mu/m wide strips. The film structure was coupled to a single-mode fiber. Mixer response was obtained at 0.78 /spl mu/m using laser frequency modulation and an optical delay line. Using two semiconductor lasers at 1.55 /spl mu/m wavelength the beating signal was used to measure the photoresponse up to 18 GHz. Nonequilibrium photoresponse in the resistive state of the superconductor was observed. Bolometric response dominates up to 3 GHz, after which the nonequilibrium response is constant up to the frequency limit of our registration system. Using an electron heating model the influence of different thermal processes on the conversion loss has been analyzed. Ways of increasing the sensitivity are also discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1619 |
Permanent link to this record |