|   | 
Details
   web
Records
Author (up) Mariantoni, Matteo; Wang, H.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, John M.; Cleland, A. N.
Title Photon shell game in three-resonator circuit quantum electrodynamics Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 4 Pages 287-293
Keywords fromIPMRAS
Abstract The generation and control of quantum states of light constitute fundamental tasks in cavity quantum electrodynamics (QED). The superconducting realization of cavity QED, circuit QED (refs 11, 12, 13, 14), enables on-chip microwave photonics, where superconducting qubits control and measure individual photon states. A long-standing issue in cavity QED is the coherent transfer of photons between two or more resonators. Here, we use circuit QED to implement a three-resonator architecture on a single chip, where the resonators are interconnected by two superconducting phase qubits. We use this circuit to shuffle one- and two-photon Fock states between the three resonators, and demonstrate qubit-mediated vacuum Rabi swaps between two resonators. By shuffling superposition states we are also able to demonstrate the high-fidelity phase coherence of the transfer. Our results illustrate the potential for using multi-resonator circuits as photon quantum registers and for creating multipartite entanglement between delocalized bosonic modes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 838
Permanent link to this record
 

 
Author (up) Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y.
Title Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors Type Journal Article
Year 2015 Publication Sci. Rep. Abbreviated Journal
Volume 5 Issue Pages 14383
Keywords SSPD, SNSPD applications, quantum key distribution, QKD
Abstract Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1104
Permanent link to this record