toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman url  doi
openurl 
  Title Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors Type Journal Article
  Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue (up) 26 Pages 5338-5340  
  Keywords SSPD, NEP, QE  
  Abstract We have measured the quantum efficiencysQEd, GHz counting rate, jitter, and noise-equivalentpowersNEPdof nanostructured NbN superconducting single-photon detectorssSSPDsdin thevisible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-typedevices(total area 10310mm2), operating at 4.2 K, exhibit an experimental QE of up to 20% inthe visible range and,10% at 1.3 to 1.55mm wavelength and are potentially sensitive up tomidinfrareds,10mmdradiation. The SSPD counting rate was measured to be above 2 GHz withjitter,18 ps, independent of the wavelength. The devices’ NEP varies from,10−17W/Hz1/2for1.55mm photons to,10−20W/Hz1/2for visible radiation. Lowering the SSPD operatingtemperature to 2.3 K significantly enhanced its performance, by increasing the QE to,20% andlowering the NEP level to,3310−22W/Hz1/2, both measured at 1.26mm wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 532  
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue (up) 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: