|
Records |
Links |
|
Author |
Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N. |
|
|
Title |
Thermal properties of NbN single-photon detectors |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Phys. Rev. Applied |
Abbreviated Journal |
Phys. Rev. Applied |
|
|
Volume |
10 |
Issue |
6 |
Pages |
064063 (1 to 8) |
|
|
Keywords |
NbN SSPD, SNSPD |
|
|
Abstract |
We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2331-7019 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1226 |
|
Permanent link to this record |
|
|
|
|
Author |
Korneeva, Y. P.; Manova, N. N.; Dryazgov, M. A.; Simonov, N. O.; Zolotov, P. I.; Korneev, A. A. |
|
|
Title |
Influence of sheet resistance and strip width on the detection efficiency saturation in micron-wide superconducting strips and large-area meanders |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Supercond. Sci. Technol. |
Abbreviated Journal |
Supercond. Sci. Technol. |
|
|
Volume |
34 |
Issue |
8 |
Pages |
084001 |
|
|
Keywords |
NbN SSPD, SMSPD |
|
|
Abstract |
We report our study of detection efficiency (DE) saturation in wavelength range 400 – 1550 nm for the NbN Superconducting Microstrip Single-Photon Detectors (SMSPD) featuring the strip width up to 3 μm. We observe an expected decrease of the $DE$ saturation plateau with the increase of photon wavelength and decrease of film sheet resistance. At 1.7 K temperature DE saturation can be clearly observed at 1550 nm wavelength in strip with the width up to 2 μm when sheet resistance of the film is above 630Ω/sq. In such strips the length of the saturation plateau almost does not depend on the strip width. We used these films to make meander-shaped detectors with the light sensitive area from 20×20μm2 to a circle 50 μm in diameter. In the latter case, the detector with the strip width of 0.49 μm demonstrates saturation of DE up to 1064 nm wavelength. Although DE at 1310 and 1550 nm is not saturated, it is as high as 60%. The response time is limited by the kinetic inductance and equals to 20 ns(by 1/e decay), timing jitter is 44 ps. When coupled to multi-mode fibre large-area meanders demonstrate significantly higher dark count rate which we attribute to thermal background photons, thus advanced filtering technique would be required for practical applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0953-2048 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1793 |
|
Permanent link to this record |
|
|
|
|
Author |
Romanov, N. R.; Zolotov, P. I.; Smirnov, K. V. |
|
|
Title |
Development of disordered ultra-thin superconducting vanadium nitride films |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Proc. 8th Int. Conf. Photonics and Information Optics |
Abbreviated Journal |
Proc. 8th Int. Conf. Photonics and Information Optics |
|
|
Volume |
|
Issue |
|
Pages |
425-426 |
|
|
Keywords |
VN films |
|
|
Abstract |
We present the results of development and research of superconducting vanadium nitride VN films ~10 nm thick having different level of disorder. It is showed that both silicon substrate temperature T sub in process of magnetron sputtering and total gas pressure P affect superconducting transition temperature of sputtered films and R 300 /R 20 ratio defining their level of disorder. VN films suitable for development of superconducting single-photon detectors on their basis are obtained. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
Russian |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-5-7262-2536-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf |
Approved |
no |
|
|
Call Number |
|
Serial |
1802 |
|
Permanent link to this record |
|
|
|
|
Author |
Romanov, N. R.; Zolotov, P. I.; Vakhtomin, Y. B.; Divochiy, A. V.; Smirnov, K. V. |
|
|
Title |
Electron diffusivity measurements of VN superconducting single-photon detectors |
Type |
Conference Article |
|
Year |
2018 |
Publication |
J. Phys.: Conf. Ser. |
Abbreviated Journal |
J. Phys.: Conf. Ser. |
|
|
Volume |
1124 |
Issue |
|
Pages |
051032 |
|
|
Keywords |
SSPD, SNSPD, VN |
|
|
Abstract |
The research of ultrathin vanadium nitride (VN) films as a promising candidate for superconducting single-photon detectors (SSPD) is presented. The electron diffusivity measurements are performed for such devices. Devices that were fabricated out from 9.9 nm films had diffusivity coefficient of 0.41 cm2/s and from 5.4 nm – 0.54 cm2/s. Obtained values are similar to other typical SSPD materials. The diffusivity that increases along with decreasing of the film thickness is expected to allow fabrication of the devices with improved characteristics. Fabricated VN SSPDs showed prominent single-photon response in the range 0.9-1.55 µm. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1742-6588 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1229 |
|
Permanent link to this record |
|
|
|
|
Author |
Samsonova, A. S.; Zolotov, P. I.; Baeva, E. M.; Lomakin, A. I.; Titova, N. A.; Kardakova, A. I.; Goltsman, G. N. |
|
|
Title |
Signatures of surface magnetic disorder in niobium films |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
|
|
Volume |
31 |
Issue |
5 |
Pages |
1-5 |
|
|
Keywords |
Nb films |
|
|
Abstract |
We present our studies on the evolution of the normal and superconducting properties with thickness of thin Nb films with a low level of non-magnetic disorder ( kFl≈150 for the thickest film in the set). The analysis of the superconducting behavior points to the presence of magnetic moments, hidden in the native oxide on the surface of Nb films. Using the Abrikosov-Gorkov theory, we obtain the density of surface magnetic moments of 1013 cm −2 , which is in agreement with the previously reported data for Nb films. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-8223 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1792 |
|
Permanent link to this record |