toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N. openurl 
  Title NbN HEB mixer: fabrication, noise temperature reduction and characterization Type Conference Article
  Year 2008 Publication Proc. Basic problems of superconductivity Abbreviated Journal  
  Volume Issue Pages  
  Keywords HEB, mixer, noise temperature, conversion gain bandwidth  
  Abstract We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow-Zvenigorod Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 591  
Permanent link to this record
 

 
Author Maslennikova, Anna; Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Kaurova, Natalia; Voronov, Boris; Gol’tsman, Gregory url  openurl
  Title Gain bandwidth and noise temperature of NbN HEB mixers with simultaneous phonon and diffusion cooling Type Abstract
  Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 21th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 218-219  
  Keywords  
  Abstract The space observatory Millimetron will be operating in the millimeter, sub-millimeter and infrared ranges using a 12-m cryogenic telescope in a single-dish mode, and as an interferometer with the space-earth and space-space baselines (the latter after the launch of the second identical space telescope). The observatory will allow performing astronomical observations with an unprecedented sensitivity (down to nJy level) in the single-dish mode, and observations with a high angular resolution in the interferometer mode. The total spectral range 20 μm – 2 cm is separated into 10 bands. HEB mixers with two cooling channels (diffusion and phonon) have been chosen to be the detectors of choice of the system covering the range from 1 THz to 6 THz as the best detectors in terahertz receivers. This type of HEB has already shown good work in the terahertz range. A gain bandwidth of 6 GHz at an LO frequency of 300 GHz and a noise temperature of 750 K at an LO frequency of 2.5 THz are the best values for HEB mixers with two cooling channels [1]. Theoretical estimations predict a bandwidth up to 12 GHz. Reaching such good result demands more systematic and thorough research. We present the results of the gain bandwidth and noise temperature measurements for superconducting hot- electron bolometer mixers with two cooling channels. These characteristics of the devices of lengths varying from 50 to 200 nm were measured for the purposes of Millimetron at frequencies of 600 GHz, 2.5 THz, and 3.8 THz. For gain bandwidth measurements we use two BWO’s operating at 600 GHz: one as the signal and the second as the LO. The noise temperature measurements were performed using a gas discharge laser as the LO and blackbodies at 77 K and 295 K as input signals. The devices studied consist of 3.5-nm-thick NbN bridges connected to thick (10 nm) high conductivity Au leads fabricated in situ. This method of fabricating devices has already proved promising by opening the diffusion cooling channel. [2] Fig. 1 shows a SEM photograph of a log-spiral antenna with an HEB at its apex. Fig. 1. Left: a SEM photograph of a log-spiral antenna with an HEB at its apex; right: a close-up of the HEB at the antenna apex. [1] S. A. Ryabchun, I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov, and G. N. Gol’tsman, NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling, Proc. of the 20 th Int. Symp. Space. Technol., Charlottesville, Virginia, USA, April 20 – 22, 2009. 218[2] S. A. Ryabchun * , I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov and G. N. Goltsman, Fabrication and characterisation of NbN HEB mixers with in situ gold contacts, Proc. of the 19 th Int. Symp. Space. Technol., Groningen, The Netherlands, April 28-30, 2008  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1393  
Permanent link to this record
 

 
Author Rath, P.; Vetter, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Nebel, C.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps Type Conference Article
  Year 2016 Publication Integrated Optics: Devices, Mat. Technol. XX Abbreviated Journal Integrated Optics: Devices, Mat. Technol. XX  
  Volume 9750 Issue Pages 135-142  
  Keywords SSPD, Superconducting Nanowire Single-Photon Detector, SNSPD, Single Photon Detector, Diamond Photonics, Diamond Integrated Optics, Diamond Waveguides, Integrated Optics, Low Timing Jitter  
  Abstract We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavelength regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 μA) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4×10-19 W/Hz1/2 at 765 nm) and timing jitter (down to 23 ps).  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Broquin, J.-E.; Conti, G.N.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1210  
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Edward; Blundell, Raymond; Gol'tsman, Gregory openurl 
  Title Microwave stabilization of HEB mixer by a microchip controller Type Conference Article
  Year 2012 Publication IEEE MTT-S international microwave symposium digest Abbreviated Journal  
  Volume Issue Pages 1-3  
  Keywords HEB mixer stability, microwave injection, Allan variance, Allan time  
  Abstract The stability of a Hot Electron Bolometer (HEB) mixer can be improved by the use of microwave injection. In this article we report a refinement of this approach. We introduce a microchip controller to facilitate the implementation of the stabilization scheme, and demonstrate that the feedback loop effectively suppresses drifts in the HEB bias current, leading to an improvement in the receiver stability. The measured Allan time of the mixer's IF output power is increased to > 10 s.  
  Address Montreal, QC, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 857  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B. url  openurl
  Title Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 331-336  
  Keywords NbN HEB mixers  
  Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 945  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: