toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Emelianov, A. V.; Nekrasov, N. P.; Moskotin, M. V.; Fedorov, G. E.; Otero, N.; Romero, P. M.; Nevolin, V. K.; Afinogenov, B. I.; Nasibulin, A. G.; Bobrinetskiy, I. I. url  doi
openurl 
  Title Individual SWCNT transistor with photosensitive planar junction induced by two‐photon oxidation Type Journal Article
  Year 2021 Publication Adv. Electron. Mater. Abbreviated Journal (up) Adv. Electron. Mater.  
  Volume 7 Issue 3 Pages 2000872  
  Keywords SWCNT transistors  
  Abstract The fabrication of planar junctions in carbon nanomaterials is a promising way to increase the optical sensitivity of optoelectronic nanometer-scale devices in photonic connections, sensors, and photovoltaics. Utilizing a unique lithography approach based on direct femtosecond laser processing, a fast and easy technique for modification of single-walled carbon nanotube (SWCNT) optoelectronic properties through localized two-photon oxidation is developed. It results in a novel approach of quasimetallic to semiconducting nanotube conversion so that metal/semiconductor planar junction is formed via local laser patterning. The fabricated planar junction in the field-effect transistors based on individual SWCNT drastically increases the photoresponse of such devices. The broadband photoresponsivity of the two-photon oxidized structures reaches the value of 2 × 107 A W−1 per single SWCNT at 1 V bias voltage. The SWCNT-based transistors with induced metal/semiconductor planar junction can be applied to detect extremely small light intensities with high spatial resolution in photovoltaics, integrated circuits, and telecommunication applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1843  
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K. url  doi
openurl 
  Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal (up) AIP Advances  
  Volume 9 Issue 7 Pages 075307  
  Keywords NbN HEB mixers, QCL, IR  
  Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1293  
Permanent link to this record
 

 
Author Karasik, B. S.; Elantiev, A. I. url  doi
openurl 
  Title Noise temperature limit of a superconducting hot-electron bolometer mixer Type Journal Article
  Year 1996 Publication Applied Physics Letters Abbreviated Journal (up) Appl. Phys. Lett.  
  Volume 68 Issue 6 Pages 853-855  
  Keywords HEB mixer noise temperature, Johnson noise, thermal fluctuation noise, noise bandwidth  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 260  
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Pechen, E. V.; Krasnosvobodtsev, S. I. url  doi
openurl 
  Title Diffusion cooling mechanism in a hot-electron NbC microbolometer mixer Type Journal Article
  Year 1996 Publication Applied Physics Letters Abbreviated Journal (up) Appl. Phys. Lett.  
  Volume 68 Issue 16 Pages 2285-2287  
  Keywords HEB mixer, diffusion cooling channel, diffusion channel  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 262  
Permanent link to this record
 

 
Author Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Y. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Y. url  doi
openurl 
  Title Rise time of voltage pulses in NbN superconducting single photon detectors Type Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal (up) Appl. Phys. Lett.  
  Volume 109 Issue 5 Pages 052601  
  Keywords SSPD, SNSPD  
  Abstract We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

D.Yu.V. acknowledges the support from the Russian Foundation for Basic Research (Project No. 15-42-02365). K.V.S. acknowledges the financial support from the Ministry of Education and Science of the Russian Federation (Contract No. 3.2655.2014/K).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1236  
Permanent link to this record
 

 
Author Maslennikov, S. url  openurl
  Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
  Year 2014 Publication arXiv Abbreviated Journal (up) arXiv  
  Volume 1404.5276 Issue Pages 1-4  
  Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method  
  Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 954  
Permanent link to this record
 

 
Author Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P. url  doi
openurl 
  Title Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors Type Journal Article
  Year 2015 Publication Carbon Abbreviated Journal (up) Carbon  
  Volume 87 Issue Pages 330-337  
  Keywords carbon nanotubes, CNT detectors, field effect transistors, FET  
  Abstract Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1778  
Permanent link to this record
 

 
Author Chulcova, G. M.; Ptitsina, N. G.; Gershenzon, E. M.; Gershenzon, M. E.; Sergeev, A. V. url  doi
openurl 
  Title Effect of the interference between electron-phonon and electron-impurity (boundary) scattering on resistivity Nb, Al, Be films Type Conference Article
  Year 1996 Publication Czech J. Phys. Abbreviated Journal (up) Czech J. Phys.  
  Volume 46 Issue S5 Pages 2489-2490  
  Keywords Al, Be, Nb films  
  Abstract The temperature dependence of the resistivity of thin Nb, Al, Be films has been studied over a wide temperature range 4-300 K. We have found that the temperature-dependent correction to the residual resistivity is well described by the sum of the Bloch-Grüneisen term and the term originating from the interference between electron-phonon and electron-impurity scattering. Study of the transport interference phenomena allows to determine electron-phonon coupling in disordered metals. The interference term is proportional to T2 and also to the residual resistivity and dominates over the Bloch-Grüneisen term at low temperatures (T<40 K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-4626 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1767  
Permanent link to this record
 

 
Author Eletskii, A. V.; Sarychev, A. K.; Boginskaya, I. A.; Bocharov, G. S.; Gaiduchenko, I. A.; Egin, M. S.; Ivanov, A. V.; Kurochkin, I. N.; Ryzhikov, I. A.; Fedorov, G. E. url  doi
openurl 
  Title Amplification of a Raman scattering signal by carbon nanotubes Type Journal Article
  Year 2018 Publication Dokl. Phys. Abbreviated Journal (up) Dokl. Phys.  
  Volume 63 Issue 12 Pages 496-498  
  Keywords carbon nanotubes, CNT, Raman scattering, RLS  
  Abstract The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1028-3358 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1775  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Khabibullin, R. A.; Shchavruk, N. V.; Smirnov, K. V.; Silaev, A. A. url  doi
openurl 
  Title Characterization of the THz quantum cascade laser using fast superconducting hot electron bolometer Type Journal Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal (up) EPJ Web Conf.  
  Volume 195 Issue Pages 04004 (1 to 2)  
  Keywords NbN HEB, QCL  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference 3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)  
  Notes Approved no  
  Call Number Serial 1808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: