toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C. doi  openurl
  Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2007 Publication (up) Proc. International conference on microwave and millimeter wave technology Abbreviated Journal Proc. ICMMT  
  Volume Issue Pages 1-3  
  Keywords HEB, mixer, gain bandwidth  
  Abstract In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Builin Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 575  
Permanent link to this record
 

 
Author Korneev, A. A. url  doi
openurl 
  Title Superconducting NbN microstrip single-photon detectors Type Abstract
  Year 2021 Publication (up) Proc. Quantum Optics and Photon Counting Abbreviated Journal Proc. Quantum Optics and Photon Counting  
  Volume 11771 Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting Single-Photon Detectors (SSPD) invented two decades ago have evolved to a mature technology and have become devices of choice in the advanced applications of quantum optics, such as quantum cryptography and optical quantum computing. In these applications SSPDs are coupled to single-mode fibers and feature almost unity detection efficiency, negligible dark counts, picosecond timing jitter and MHz photon count rate. Meanwhile, there are great many applications requiring coupling to multi-mode fibers or free space. ‘Classical’ SSPDs with 100-nm-wide superconducting strip and covering area of about 100 µm2 are not suitable for further scaling due to degradation of performance and low fabrication yield. Recently we have demonstrated single-photon counting in micron-wide superconducting bridges and strips. Here we present our approach to the realization of practical photon-counting detectors of large enough area to be efficiently coupled to multi-mode fibers or free space. The detector is either a meander or a spiral of 1-µm-wide strip covering an area of 50x50 µm2. Being operated at 1.7K temperature it demonstrates the saturated detection efficiency (i.e. limited by the absorption in the detector) up to 1550 nm wavelength, about 10 ns dead time and timing jitter in range 50-100 ps.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Optics and Photon Counting; SPIE Optics + Optoelectronics, 2021, Online Only  
  Notes Approved no  
  Call Number Serial 1784  
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Morozov, P.; Seleznev, V.; Smirnov, K url  openurl
  Title Development of fast and high-effective single-photon detector for spectrum range up to 2.3 μm Type Conference Article
  Year 2017 Publication (up) Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN  
  Volume Issue Pages 439-440  
  Keywords SSPD, SNSPD  
  Abstract We present the results of development and testing of the single-photon-counting system operating in the wide spectrum rane up to 2.3 mcm. We managed to increase system detection efficiency up to 60% in the range of 1.7-2.3 mcm optimisation of the fabrication methods of superconducting single-photon detectors and application of the single-mode fiber with enlarged core diameter.  
  Address St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1255  
Permanent link to this record
 

 
Author Korneev, Alexander; Korneeva, Yulia; Florya, Irina; Elezov, Michael; Manova, Nadezhda; Tarkhov, Michael; An, Pavel; Kardakova, Anna; Isupova, Anastasiya; Chulkova, Galina; Voronov, Boris openurl 
  Title Recent advances in superconducting NbN single-photon detector development Type Conference Article
  Year 2011 Publication (up) Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 807202 (1 to 10)  
  Keywords SSPD  
  Abstract Superconducting single-photon detector (SSPD) is a planar nanostructure patterned from 4-nm-thick NbN film deposited on sapphire substrate. The sensitive element of the SSPD is 100-nm-wide NbN strip. The device is operated at liquid helium temperature. Absorption of a photon leads to a local suppression of superconductivity producing subnanosecond-long voltage pulse. In infrared (at 1550 nm and longer wavelengths) SSPD outperforms avalanche photodiodes in terms of detection efficiency (DE), dark counts rate, maximum counting rate and timing jitter. Efficient single-mode fibre coupling of the SSPD enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. Recently we managed to improve the SSPD performance and measured 25% detection efficiency at 1550 nm wavelength and dark counts rate of 10 s-1. We also improved photon-number resolving SSPD (PNR-SSPD) which realizes a spatial multiplexing of incident photons enabling resolving of up to 4 simultaneously absorbed photons. Another improvement is the increase of the photon absorption using a λ/4 microcavity integrated with the SSPD. And finally in our strive to increase the DE at longer wavelengths we fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm and demonstrated that in middle infrared (about 3 μm wavelength) these devices have DE several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 663  
Permanent link to this record
 

 
Author Sidorova, Maria V.; Divochiy, Alexander; Vakhtomin, Yury B.; Smirnov, Konstantin V. openurl 
  Title Ultrafast superconducting single-photon detector with reduced-size active area coupled to a tapered lensed single-mode fiber Type Conference Article
  Year 2015 Publication (up) Proc. SPIE Abbreviated Journal  
  Volume 9504 Issue Pages 950408 (1 to 9)  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor International Society for Optics and Photonics  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ sidorova2015ultrafast Serial 1051  
Permanent link to this record
 

 
Author Moshkova, M. A.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V. url  doi
openurl 
  Title High-efficiency multi-element superconducting single-photon detector Type Conference Article
  Year 2021 Publication (up) Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 11771 Issue Pages 2-8  
  Keywords PNR SSPD, large active area, detection efficiency  
  Abstract We present the result of the creation and investigation of the multi-element superconducting single photon detectors, which can recognize the number of photons (up to six) in a short pulse of the radiation at telecommunication wavelengths range. The best receivers coupled with single-mode fiber have the system quantum efficiency of ⁓85%. The receivers have a 100 ps time resolution and a few nanoseconds dead time that allows them to operate at megahertz counting rate. Implementation of the multi-element architecture for creation of the superconducting single photon detectors with increased sensitive area allows to create the high efficiency receivers coupled with multi-mode fibers and with preserving of the all advantages of superconducting photon counters.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Optics and Photon Counting  
  Notes Approved no  
  Call Number Serial 1795  
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y. url  doi
openurl 
  Title On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type Conference Article
  Year 2016 Publication (up) Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9907 Issue Pages 99070P (1 to 13)  
  Keywords SPAD, NbN SSPD applications, SNSPD  
  Abstract We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical and Infrared Interferometry and Imaging V  
  Notes Approved no  
  Call Number Serial 1809  
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector Type Journal Article
  Year 2016 Publication (up) Rev. Sci. Instrum. Abbreviated Journal  
  Volume 87 Issue Pages 053117 (1 to 5)  
  Keywords SSPD, SNSPD, TCSPC, jitter  
  Abstract Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1077  
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
  Year 2016 Publication (up) Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 87 Issue 6 Pages 069901  
  Keywords SSPD, SNSPD, TCSPC, jitter  
  Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).  
  Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27370512 Approved no  
  Call Number Serial 1810  
Permanent link to this record
 

 
Author Semenov, A. V.; Devyatov, I. A.; Ryabchun, S. A.; Maslennikov, S. N.; Maslennikova, A. S.; Larionov, P. A.; Voronov, B. M.; Chulkova, G. M. url  openurl
  Title Absorption of terahertz electromagnetic radiation in dirty superconducting film at arbitrary type of the spectral functions Type Journal Article
  Year 2011 Publication (up) Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords terahertz electromagnetic radiation; superconductors; detectors of terahertz range  
  Abstract A problem of absorption of high-frequency electromagnetic field in dirty superconductor is treated within Keldysh technic. Expression for the source term in the kinetic equation for quasiparticle distribution function is derived. The result is significant for deriving a consistent microscopic theory of superconducting detectors for terahertz frequency range, perspective detectors on kinetic inductance of current-biased superconducting strip and on Josephson inductance of tunnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 7 pages Approved no  
  Call Number Serial 1117  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: