toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Paine, Scot.t. N.; Patt, Ferdinand; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene doi  openurl
  Title Superconductive hot-electron bolometer mixer receiver for 800 GHz operation Type Miscellaneous
  Year 2000 Publication IEEE Trans. Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microwave Theory and Techniques  
  Volume 48 Issue 4 Pages 683-689  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ Kawamura_superconductivehot-electron Serial 424  
Permanent link to this record
 

 
Author Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. doi  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5727 Issue Pages 95-106  
  Keywords NbN HEB mixers  
  Abstract We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV  
  Notes Approved no  
  Call Number Serial 378  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 61 Issue Pages 1081-1085  
  Keywords SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
 

 
Author Гершензон, Е. М. openurl 
  Title Воздействие электромагнитного излучения на сверхпроводящую плёнку ниобия в резистивном состоянии Type Conference Article
  Year 1982 Publication Тезисы докладов 22 Всесоюзной конференции по физике низких температур Abbreviated Journal  
  Volume Issue Pages 79-80  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 231  
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'In, K.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers on sapphire substrates Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 245-257  
  Keywords NbN HEB mixers, fabrication process  
  Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 mm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 1.1 wide and 211 long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.5 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 276  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S. url  openurl
  Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 23-28  
  Keywords waveguide NbN HEB mixers  
  Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 275  
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
  Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal Proc. 28th European Microwave Conf.  
  Volume 1 Issue Pages 294-299  
  Keywords NbN HEB mixers  
  Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 28th European Microwave Conference  
  Notes Approved no  
  Call Number Serial 1580  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-114  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1587  
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Kawamura, Jonathan; Todd, R. Hunter; Papa, D. Cosmo; Blundell, Raymond.; Smith, Michael; Patt, Ferdinand; Gol'tsman, Gregory; Gershenzon, Eugene url  openurl
  Title Successful operation of a 1 THz NbN hot-electron bolometer receiver Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 49-59  
  Keywords NbN HEB mixers, applications  
  Abstract A phonon-cooled NbN superconductive hot-electron bolometer receiver covering the frequency range 0.8-1.04 THz has successfully been used for astronomical observation at the Sub-Millimeter Telescope Observatory on Mount Graham, Arizona. This waveguide heterodyne receiver is a modified version of our fixed-tuned 800 GHz HEB receiver to allow for operation beyond 1 THz. The measured noise temperature of this receiver is about 1250 K at 0.81 THz, 560 K at 0.84 THz, and 1600 K at 1.035 THz. It has a 1 GHz wide IF bandwidth, centered at 1.8 GHz. This receiver has recently been used to detect the CO (9-8) molecular line emission at 1.037 THz in the Orion nebula. This is the first time a ground-based heterodyne receiver has been used to detect a celestial source above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 303  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 39-48  
  Keywords NbN HEB mixers  
  Abstract We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 305  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: