|   | 
Details
   web
Records
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N.
Title (up) A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 100 Issue 13 Pages 131104 (1 to 4)
Keywords semiconductor superlattice
Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1379
Permanent link to this record
 

 
Author Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P.
Title (up) Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits Type Journal Article
Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 21 Issue 19 Pages 22683-22692
Keywords SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides
Abstract We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:24104155 Approved no
Call Number Serial 1213
Permanent link to this record
 

 
Author Semenov, A. V.; Devyatov, I. A.; Ryabchun, S. A.; Maslennikov, S. N.; Maslennikova, A. S.; Larionov, P. A.; Voronov, B. M.; Chulkova, G. M.
Title (up) Absorption of terahertz electromagnetic radiation in dirty superconducting film at arbitrary type of the spectral functions Type Journal Article
Year 2011 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 10 Pages
Keywords terahertz electromagnetic radiation; superconductors; detectors of terahertz range
Abstract A problem of absorption of high-frequency electromagnetic field in dirty superconductor is treated within Keldysh technic. Expression for the source term in the kinetic equation for quasiparticle distribution function is derived. The result is significant for deriving a consistent microscopic theory of superconducting detectors for terahertz frequency range, perspective detectors on kinetic inductance of current-biased superconducting strip and on Josephson inductance of tunnel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 7 pages Approved no
Call Number Serial 1117
Permanent link to this record
 

 
Author Gershenzon, E. M.; Orlov, L. A.; Ptitsina, N. G.
Title (up) Absorption spectra in electron transitions between excited states of impurities in germanium Type Journal Article
Year 1975 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 22 Issue 4 Pages 95-97
Keywords Ge, impurities, excited states, absorption spectra
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1773
Permanent link to this record
 

 
Author Varyukhin, S. V.; Zakharov, A. A.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsyna, N. G.; Chulkova, G. M.
Title (up) AC losses and submillimeter absorption in single crystals La2CuO4 Type Journal Article
Year 1990 Publication Phys. B Condens. Mat. Abbreviated Journal Phys. B Condens. Mat.
Volume 165-166 Issue Pages 1269-1270
Keywords metal-dielectric-La2Cu04
Abstract The La2CuO4 single crystals were used to carry out the measurements of transmission spectra within the submillimeter range of wavelengths, as well as the capacitance C and conductivity G in the region of acoustic frequencies of the metal-dielectric-La2Cu04 system at low temperatures. The optical spectra display a threshold character. There takes place a sharp decreasing of transmission signal in the energy range of hυ>1.5meV. The C(ω,T) and G(ω,T) dependences have a universal form characteristic of relaxation processes of the Debye type. The relaxation time dependence displays a thermoactivation character τ(T)-exp(ξ/T) with a gap value of ξ≃2meV,coinciding with the optical one. It is assumed that there exist excitations with a characteristic energy ~ 2meV in La2Cu04.A possible nature of the revealed low-energy excitations is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1686
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Perepelitsa, A.; Ryabchun, S.; Kaurova, N.; Shurakov, A.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title (up) Ag2S QDs/Si heterostructure-based ultrasensitive SWIR range detector Type Journal Article
Year 2020 Publication Nanomaterials (Basel) Abbreviated Journal Nanomaterials (Basel)
Volume 10 Issue 5 Pages 1-12
Keywords detector; quantum dots; short-wave infrared range; silicon
Abstract In the 20(th) century, microelectronics was revolutionized by silicon-its semiconducting properties finally made it possible to reduce the size of electronic components to a few nanometers. The ability to control the semiconducting properties of Si on the nanometer scale promises a breakthrough in the development of Si-based technologies. In this paper, we present the results of our experimental studies of the photovoltaic effect in Ag2S QD/Si heterostructures in the short-wave infrared range. At room temperature, the Ag2S/Si heterostructures offer a noise-equivalent power of 1.1 x 10(-10) W/ radicalHz. The spectral analysis of the photoresponse of the Ag2S/Si heterostructures has made it possible to identify two main mechanisms behind it: the absorption of IR radiation by defects in the crystalline structure of the Ag2S QDs or by quantum QD-induced surface states in Si. This study has demonstrated an effective and low-cost way to create a sensitive room temperature SWIR photodetector which would be compatible with the Si complementary metal oxide semiconductor technology.
Address Laboratory of nonlinear optics, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan 420029, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Medium
Area Expedition Conference
Notes PMID:32365694; PMCID:PMC7712218 Approved no
Call Number Serial 1151
Permanent link to this record
 

 
Author Eletskii, A. V.; Sarychev, A. K.; Boginskaya, I. A.; Bocharov, G. S.; Gaiduchenko, I. A.; Egin, M. S.; Ivanov, A. V.; Kurochkin, I. N.; Ryzhikov, I. A.; Fedorov, G. E.
Title (up) Amplification of a Raman scattering signal by carbon nanotubes Type Journal Article
Year 2018 Publication Dokl. Phys. Abbreviated Journal Dokl. Phys.
Volume 63 Issue 12 Pages 496-498
Keywords carbon nanotubes, CNT, Raman scattering, RLS
Abstract The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1028-3358 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1775
Permanent link to this record
 

 
Author Kawamura, J. H.; Tong, C.-Y.E.; Blundell, R.; Cosmo Papa, D.; Hunter, T. R.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title (up) An 800 GHz NbN phonon-cooled hot-electron bolometer mixer receiver Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3753-3756
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver developed for astronomical applications to operate in the 350 /spl mu/m atmospheric window. The waveguide receiver employs a superconductive NbN phonon-cooled hot-electron bolometer mixer. The double sideband receiver noise temperature closely follows 1 kGHz/sup -1/ across 780-870 GHz, with the intermediate frequency centered at 1.4 GHz. The conversion loss is about 15 dB. The receiver was installed for operation at the University of Arizona/Max Planck Institute for Radio Astronomy Submillimeter Telescope facility. The instrument was successfully used to conduct test observations of a number of celestial sources in a number of astronomically important spectral lines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 288
Permanent link to this record
 

 
Author Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title (up) An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.
Volume 9 Issue 9 Pages 366-368
Keywords waveguide NbN HEB mixers
Abstract A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1565
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G.
Title (up) An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 472-475
Keywords waveguide NbN HEB mixers
Abstract We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 1439677 Serial 1464
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C. Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol'tsman, G.
Title (up) An investigation of the performance of the superconducting HEB슠mixer as a function of its RF슠embedding impedance Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 15 Issue 2 Pages 472-475
Keywords HEB mixer
Abstract
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 371
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title (up) An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1533
Permanent link to this record
 

 
Author Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lee, C.; Rockstuhl, C.; Semenov, A.; Gol'tsman, G.; Pernice, W.
Title (up) Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate Type Journal Article
Year 2019 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 115 Issue 10 Pages 101104
Keywords SSPD, SNSPD, waveguide
Abstract Nanophotonic circuitry and superconducting nanowires have been successfully combined for detecting single photons, propagating in an integrated photonic circuit, with high efficiency and low noise and timing uncertainty. Waveguide-integrated superconducting nanowire single-photon detectors (SNSPDs) can nowadays be engineered to achieve subnanosecond recovery times and can potentially be adopted for applications requiring Gcps count rates. However, particular attention shall be paid to such an extreme count rate regime since artifacts in the detector functionality emerge. In particular, a count-rate dependent detection efficiency has been encountered that can compromise the accuracy of quantum detector tomography experiments. Here, we investigate the response of waveguide-integrated SNSPDs at high photon flux and identify the presence of parasitic currents due to the accumulation of charge in the readout electronics to cause the above-mentioned artifact in the detection efficiency. Our approach allows us to determine the maximum photon count rate at which the detector can be operated without adverse effects. Our findings are particularly important to avoid artifacts when applying SNSPDs for quantum tomography.

We acknowledge support through ERC Consolidator Grant No. 724707 and from the Deutsche Forschungsgemeinschaft through Project No. PE 1832/5-1,2, as well as funding by the Volkswagen Foundation. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 675745. V.K. and G.G. acknowledge support from the Russian Science Foundation Project No. 16-12-00045 (NbN film deposition and testing). A.V. acknowledges support from the Karlsruhe School of Optics and Photonics (KSOP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1185
Permanent link to this record
 

 
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N.
Title (up) Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
Year 2016 Publication Semicond. Abbreviated Journal Semicond.
Volume 50 Issue 12 Pages 1600-1603
Keywords carbon nanotubes, CNT detectors
Abstract Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1776
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Mel'nikov, A. P.
Title (up) Binding energy of a carrier with a neutral impurity atom in germanium and in silicon Type Journal Article
Year 1971 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 14 Issue 5 Pages 185-186
Keywords Ge, Si, neutral impurity atom, binding energy
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1739
Permanent link to this record