toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. url  openurl
  Title Noise performance of NbN hot electron bolometer mixers at 2.5 THz and its dependence on the contact resistance Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 11-19  
  Keywords NbN HEB mixers  
  Abstract NbN hot electron bolometer mixers (HEBM) are at this moment the best heterodyne receivers for frequencies above 1 Thz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. The result is a low transparency interface between the bolometer itself and the contact/antenna structure. In this paper we report a detailed experimental study on a novel idea to increase the transparency of this interface. This leads to a record sensitivity and more reproducible performance. We compare identical bolometers, coupled with a spiral antenna, with different NbN bolometer-contact pad interfaces. We find that cleaning the NbN interface alone results in an increase in the noise temperature. However, cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature of the HEBm with more than a factor of 2. A device with a contact pad on top of an in-situ cleaned NbN film consisting of 10 nm of NbTiN and 40 nm of gold has a DSB noise temperature of 1050 K at 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1497  
Permanent link to this record
 

 
Author (up) Baselmans, J. J. A.; Hajenius, M.; Gao, J.; de Korte, P.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages 168-176  
  Keywords Hot electron bolometers, bandwidth, noise temperature, experimental  
  Abstract NbN hot electron bolometer (HEB) mixers are at this moment the best heterodyne detectors for frequencies above 1 THz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. This results in a contact resistance between the NbN bolometer and the contact pad. We compare identical bolometers, with different NbN – contact pad interfaces, coupled with a spiral antenna. We find that cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature and the bandwidth of the HEB mixers with more than a factor of 2. We obtain a DSB noise temperature of 950 K at 2.5 THz and a Gain bandwidth of 5-6 GHz. For use in real receiver systems we design small volume (0.15x1 micron) HEB mixers with a twin slot antenna. We find that these mixers combine good sensitivity (900 K at 1.6 THz) with low LO power requirement, which is 160 – 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II  
  Notes Approved no  
  Call Number Serial 1744  
Permanent link to this record
 

 
Author (up) Baubert, J.; Salez, M.; Delorme, Y.; Pons, P.; Goltsman, G.; Merkel, H.; Leconte, B. url  doi
openurl 
  Title Membrane-based HEB mixer for THz applications Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5116 Issue Pages 551-562  
  Keywords membrane NbN HEB mixers, heterodyne receiver, stress-less membrane, coupling efficiency, submillimeter-waves frequency, low-cost space applications  
  Abstract We report in this paper a new concept for 2.7 THz superconducting Niobium nitride (NbN) Hot-Electron Bolometer mixer (HEB). The membrane process was developped for space telecommnunication applications a few years ago and the HEB mixer concept is now considered as the best choice for low-noise submillimeter-wave frequency heterodyne receivers. The idea is then to join these two technologies. The novel fabrication scheme is to fabricate a NbN HEB mixer on a 1 μm thick stress-less Si3N4/SiO2 membrane. This seems to present numerous improvements concerning : use at higher RF frequencies, power coupling efficiency, HEB mixer sensitivity, noise temperature, and space applications. This work is to be continued within the framework of an ESA TRP project, a 2.7 THz heterodyne camera with numerous applications including a SOFIA airborne receiver. This paper presents the whole fabrication process, the validation tests and preliminary results. Membrane-based HEB mixer theory is currently being investigated and further tests such as heterodyne and Fourier transform spectrometry measurement are planed shortly.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Chiao, J.-C.; Varadan, V.K.; Cané, C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Smart Sensors, Actuators, and MEMS  
  Notes Approved no  
  Call Number Serial 1520  
Permanent link to this record
 

 
Author (up) Baubert, J.; Salez, M.; Merkel, H.; Pons, P.; Cherednichenko, S.; Lecomte, B.; Drakinsky, V.; Goltsman, G.; Leone, B. url  doi
openurl 
  Title IF gain bandwidth of membrane-based NbN hot electron bolometers for SHAHIRA Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 507-510  
  Keywords NbN HEB mixers, applications  
  Abstract SHAHIRA (Submm Heterodyne Array for HIgh-speed Radio Astronomy) is a project supported by the European Space Agency (ESA) and is designed to fly on the SOFIA observatory. A quasi-optic design has been chosen for 2.5/2.7 THz and 4.7 THz, for hydroxyde radical OH, deuterated hydrogen HD and neutral atomic oxygen OI lines observations. Hot electron bolometers (HEBs) have been processed on 1 /spl mu/m thick SiO/sub 2//Si/sub 3/N/sub 4/ stress-less membranes. In this paper we analyse the intermediate frequency (IF) gain bandwidth from the theoretical point of view, and compare it to measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1468  
Permanent link to this record
 

 
Author (up) Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol’tsman, G. N.; Demsar, J. url  openurl
  Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Miscellaneous
  Year 2011 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords NbN thin film, energy gap dynamics  
  Abstract Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 641 Approved no  
  Call Number Serial 1388  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: