toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G. url  doi
openurl 
  Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1092 Issue Pages 012039 (1 to 4)  
  Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1302  
Permanent link to this record
 

 
Author (up) Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G. url  doi
openurl 
  Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
  Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 118 Issue 19 Pages 194303  
  Keywords terahertz detectors, asymmetric carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1169  
Permanent link to this record
 

 
Author (up) Gayduchenko, I.; Xu, S. G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A. K.; Fedorov, G.; Svintsov, D.; Bandurin, D. A. url  doi
openurl 
  Title Tunnel field-effect transistors for sensitive terahertz detection Type Journal Article
  Year 2021 Publication Nat. Commun. Abbreviated Journal Nat. Commun.  
  Volume 12 Issue 1 Pages 543  
  Keywords field-effect transistors, bilayer graphene, BLG  
  Abstract The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here, we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG). Taking advantage of BLG's electrically tunable band structure, we create a lateral tunnel junction and couple it to an antenna exposed to THz radiation. The incoming radiation is then down-converted by the tunnel junction nonlinearity, resulting in high responsivity (>4 kV/W) and low-noise (0.2 pW/[Formula: see text]) detection. We demonstrate how switching from intraband Ohmic to interband tunneling regime can raise detectors' responsivity by few orders of magnitude, in agreement with the developed theory. Our work demonstrates a potential application of tunnel transistors for THz detection and reveals BLG as a promising platform therefor.  
  Address Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. bandurin@mit.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33483488; PMCID:PMC7822863 Approved no  
  Call Number Serial 1261  
Permanent link to this record
 

 
Author (up) Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-114  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1587  
Permanent link to this record
 

 
Author (up) Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4217-4220  
  Keywords NbN HEB mixers  
  Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1568  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: