toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) An, P.; Kovalyuk, V.; Golikov, A.; Zubkova, E.; Ferrari, S.; Korneev, A.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Experimental optimisation of O-ring resonator Q-factor for on-chip spontaneous four wave mixing Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051047  
  Keywords planar O-ring resonators, Q-factor  
  Abstract In this paper we experimentally studied the influence of geometrical parameters of the planar O-ring resonators on its Q-factor and losses. We systematically changed the gap between the bus waveguide and the ring, as well as the width of the ring. We found the highest Q = 5×105 for gap 2.0 μm and the ring width 2 μm. This work is important for further on-chip SFWM applications since the generation rate of the biphoton field strongly depends on the quality factor as Q3  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1191  
Permanent link to this record
 

 
Author (up) Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title High resolution THz gas spectrometer based on semiconductor and superconductor devices Type Conference Article
  Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages 02001 (1 to 2)  
  Keywords NbN HEB mixers, detectors, THz spectroscopy  
  Abstract The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1328  
Permanent link to this record
 

 
Author (up) Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K. url  doi
openurl 
  Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue Pages 012011 (1 to 5)  
  Keywords WSi, NbN SSPD, SNSPD  
  Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1799  
Permanent link to this record
 

 
Author (up) Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M. url  openurl
  Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations  
  Volume 9 Issue 4 Pages 242-245  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1550  
Permanent link to this record
 

 
Author (up) Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Desmaris, V.; Belitsky, V.; Gol’tsman, G. openurl 
  Title Gain bandwidth of NbN HEB mixers on GaN buffer layer operating at 2 THz local oscillator frequency Type Conference Article
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 147-148  
  Keywords NbN HEB mixers, GaN buffer-layer, IF bandwidth  
  Abstract In this paper, we present IF bandwidth measurement results of NbN HEB mixers, which are employing NbN thin films grown on a GaN buffer-layer. The HEB mixers were operated in the heterodyne regime at a bath temperature of approximately 4.5 K and with a local oscillator operating at a frequency of 2 THz. A quantum cascade laser served as the local oscillator and a reference synthesizer based on a BWO generator (130-160 GHz) and a semiconductor superlattice (SSL) frequency multiplier was used as a signal source. By changing the LO frequency it was possible to record the IF response or gain bandwidth of the HEB with a spectrum analyzer at the operation point, which yielded lowest noise temperature. The gain bandwidth that was recorded in the heterodyne regime at 2 THz amounts to approximately 5 GHz and coincides well with a measurement that has been performed at elevated bath temperatures and lower LO frequency of 140 GHz. These findings strongly support that by using a GaN buffer-layer the phonon escape time of NbN HEBs can be significantly lower as compared to e.g. Si substrate, thus, providing higher gain bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1175  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: