|   | 
Details
   web
Records
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Desmaris, V.; Belitsky, V.; Gol’tsman, G.
Title Gain bandwidth of NbN HEB mixers on GaN buffer layer operating at 2 THz local oscillator frequency Type Conference Article
Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 147-148
Keywords NbN HEB mixers, GaN buffer-layer, IF bandwidth
Abstract In this paper, we present IF bandwidth measurement results of NbN HEB mixers, which are employing NbN thin films grown on a GaN buffer-layer. The HEB mixers were operated in the heterodyne regime at a bath temperature of approximately 4.5 K and with a local oscillator operating at a frequency of 2 THz. A quantum cascade laser served as the local oscillator and a reference synthesizer based on a BWO generator (130-160 GHz) and a semiconductor superlattice (SSL) frequency multiplier was used as a signal source. By changing the LO frequency it was possible to record the IF response or gain bandwidth of the HEB with a spectrum analyzer at the operation point, which yielded lowest noise temperature. The gain bandwidth that was recorded in the heterodyne regime at 2 THz amounts to approximately 5 GHz and coincides well with a measurement that has been performed at elevated bath temperatures and lower LO frequency of 140 GHz. These findings strongly support that by using a GaN buffer-layer the phonon escape time of NbN HEBs can be significantly lower as compared to e.g. Si substrate, thus, providing higher gain bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1175
Permanent link to this record
 

 
Author Bakhvalova, T.; Belkin, M. E.; Kovalyuk, V. V.; Prokhodtcov, A. I.; Goltsman, G. N.; Sigov, A. S.
Title Studying key principles for design and fabrication of silicon photonic-based beamforming networks Type Conference Article
Year 2019 Publication PIERS-Spring Abbreviated Journal PIERS-Spring
Volume Issue Pages 745-751
Keywords silicon photonics, TriPleX platform
Abstract In the paper, we address key principles for computer-aided design and fabrication of silicon-photonics-based optical beamforming network selecting the optimal approach by simulation and experimental results. To clarify the consideration, the study is conducted on the example of a widely used binary switchable silicon-nitride optical beamforming network based on TriPleX platform. Comparison of simulation results and experimental studies of the prototype shows that the relative error due to technological imperfections does not exceed 3%. According to the estimation, such an error introduces insignificant distortion in the radiation pattern of the referred antenna array.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 9017646 Serial 1186
Permanent link to this record
 

 
Author Fedder, H.; Oesterwind, S.; Wick, M.; Olbrich, F.; Michler, P.; Veigel, T.; Berroth, M.; Schlagmüller, M.
Title Characterization of electro-optical devices with low jitter single photon detectors – towards an optical sampling oscilloscope beyond 100 GHz Type Conference Article
Year 2018 Publication ECOC Abbreviated Journal
Volume Issue Pages 1-3
Keywords SSPD, SNSPD, SPAD
Abstract We showcase an optical random sampling scope that exploits single photon counting and apply it to characterize optical transceivers. We study single photon detectors with a jitter down to 40 ps. The method can be extended beyond 100 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 8535415 Serial 1198
Permanent link to this record
 

 
Author Krause, S.; Mityashkin, V.; Antipov, S.; Gol'tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudzinski, M.
Title Study of IF bandwidth of NbN hot electron bolometers on GaN buffer layer using a direct measurement method Type Conference Article
Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 30-32
Keywords NbN HEB, GaN buffer layer
Abstract In this paper, we present a reliable measurement method to study the influence of the GaN buffer layer on phonon-escape time in comparison with commonly used Si substrates and, in consequence, on the IF bandwidth of HEBs. One of the key aspects is to operate the HEB mixer at elevated bath temperatures close to the critical temperature of the NbN ultra-thin film, where contributions from electron-phonon processes and self-heating effects are relatively small, therefore IF roll-off will be governed by the phonon-escape.Two independent experiments were performed at GARD and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. The entire IF chain was characterized by S-parameter measurements. We compared the measurement results of epitaxial NbN grown onto GaN buffer-layer with Tc of 12.5 K (4.5nm) with high quality polycrystalline NbN films on Si substrate with Tc of 10.5K (5nm) and observed a strong indication of an enhancement of phonon escape to the substrate by a factor of two for the NbN/GaN material combination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1202
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Kovalyuk, V.; Korneev, A.; Gol'tsman, G. N.
Title Photon counting detector as a mixer with picowatt local oscillator power requirement Type Conference Article
Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 110
Keywords SSPD mixer, SNSPD
Abstract At the current stage of the heterodyne receiver technology, great attention is paid to the development of detector arrays and matrices comprising many detectors on a single wafer. However, any traditional THz detector (such as SIS, HEB, or Schottky diode) requires quite a noticeable amount of Local Oscillator (LO) power which scales with the matrix size, and the total amount of the LO power needed is much greater than that available from compact and handy solid state sources. Substantial reduction of the LO power requirement may be obtained with a photon-counting detector used as a mixer. This approach, mentioned earlier in [1,2] provides a number of advantages. Thus, sensitivity of such a detector would be at the quantum limit (because of the photon-counting nature of the detector) and just a few LO photons for the mixing would be required leading to a possible breakthrough in the matrix receiver development. In addition, the receiver could be easily tuned from the heterodyne to the direct detection mode without any loss in its sensitivity with the latter limited only by the quantum efficiency of the detector used. We demonstrate such a technique with the use of the Superconducting Nanowire Single Photon Detector(SNSPD)[3] irradiated by both 1.5 μm LO with a tiny amount of power (from a few picowatts down to femtowatts) facing the detector, and the test signal with a power significantly less than that of the LO. The SNSPD was operated in the current mode and the bias current was slightly below its critical value. Irradiating the detector with either the LO or the signal source produced voltage pulses which are statistically evenly distributed and could be easily counted by a lab counter or oscilloscope. Irradiating the detector by the both lasers simultaneously produced pulses at the frequency f m which is the exact difference between the frequencies at which the two lasers operate. f m could be deduced form either counts statistics integrated over a sufficient time interval or with the help of an RF spectrum analyzer. In addition to the chip SNSPD with normal incidence coupling, we use the detectors with a travelling wave geometry design [4]. In this case a niobium nitride nanowire is placed on the top of a nanophotonic waveguide, thus increasing the efficient interaction length. Integrated device scheme allows us to measure the optical losses with high accuracy. Our approach is fully scalable and, along with a large number of devices integrated on a single chip can be adapted to the mid and far IR ranges. This work was supported in part by the Ministry of Education and Science of the Russian Federation, contract no. 14.B25.31.0007 and by RFBR grant # 16-32-00465. 1. Leaf A. Jiang and Jane X. Luu, ―Heterodyne detection with a weak local oscillator, Applied Optics Vol. 47, Issue 10, pp. 1486-1503 (2008) 2. Matsuo H. ―Requirements on Photon Counting Detectors for Terahertz Interferometry J Low Temp Phys (2012) 167:840–845 3. A. Semenov, G. Gol'tsman, A. Korneev, “Quantum detection by current carrying superconducting film”, Physica C, 352, pp. 349-356 (2001) 4. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, ―Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths., Sci. Rep., vol. 5, p. 10941, (2015).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1203
Permanent link to this record