|   | 
Details
   web
Records
Author (up) Gershenzon, E. M.; Gol'tsman, G. N.; Zorin, M. A.; Karasik, B. S.; Trifonov, V. A.
Title Nonequilibrium and bolometric response of YBaCuO films in a resistive state to infrared low intensity radiation Type Conference Article
Year 1994 Publication Council on Low-temp. Phys. Abbreviated Journal Council on Low-temp. Phys.
Volume Issue Pages 82-83
Keywords YBCO HTS HEB
Abstract
Address Dubna
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Joint Inst. for Nuclear Research, Dubna (Russian Federation); 296 p; 1994; p. 82-83; 30. Conference on low-temperature physics; 30. Soveshchanie po fizike nizkikh temperatur; Dubna (Russian Federation); 6-8 Sep 1994
Notes Неравновесный и болометрический отклик YBaCuO пленок в резиотивном состоянии на инфракрасное лазерное излучение малой интенсивности Approved no
Call Number Serial 1632
Permanent link to this record
 

 
Author (up) Gershenzon, E. M.; Goltsman, G.; Orlova, S.; Ptitsina, N.; Gurvich, Y.
Title Germanium hot-electron narrow-band detector Type Journal Article
Year 1971 Publication Sov. Radio Engineering And Electronic Physics Abbreviated Journal Sov. Radio Engineering And Electronic Physics
Volume 16 Issue 8 Pages 1346
Keywords Ge HEB detectors
Abstract
Address
Corporate Author Thesis
Publisher Scripps Clinic Res Foundation 476 Prospect St, La Jolla, Ca 92037 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1741
Permanent link to this record
 

 
Author (up) Gershenzon, E. M.; Gol’tsman, G. N.; Gousev, Y. P.; Elant’ev, A. I.; Semenov, A. D.
Title Electromagnetic radiation mixer based on electron heating in resistive state of superconductive Nb and YBaCuO films Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 1317-1320
Keywords YBCO, HTS, Nb HEB mixers
Abstract A theory of an electron-heating mixer which makes it possible to calculate all the characteristics of the device is developed. It is shown that positive conversion gain is possible for such a mixer in the millimeter to near-infrared wavelength range. The dynamic range and the optimum heterodyne power can be selected from a very wide interval by varying the mixing element volume. Measurements made for Nb within the frequency range of 120-750 GHz confirm the theory. The conversion loss obtained at T=1.6 K and normalized to the element reaches 0.3 dB in the intermediate frequency band of 40 MHz; the possible noise temperature is 50 K. The estimation of noise temperature and output band for YBaCuO at T=77 yields 200 K and more than 10 GHz, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-0069 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1681
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.
Title Hot electron bolometric mixers: new terahertz technology Type Journal Article
Year 1999 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 40 Issue 3 Pages 199-206
Keywords NbN HEB mixers
Abstract This paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixers has crossed the level of 1 K GHz−1 at 430 GHz (410 K), 600–650 GHz (480 K), 750 GHz (600 K), 810 GHz (780 K) and is close to that level at 1.1 THz (1250 K) and 2.5 THz (4500 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and about 100 nW for mixers made by e-beam lithography. A waveguide version of 800 GHz receiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, AZ, to conduct astronomical observations of known submillimeter lines (CO, J=7→6, CI, J=2→1). It was proved that the receiver works as a practical instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1570
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.
Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages 3065-3068
Keywords NbN HEB mixers
Abstract NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes About LO power required Approved no
Call Number Serial 255
Permanent link to this record