|   | 
Details
   web
Records
Author Siddiqi, I.; Prober, D. E.
Title Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection Type Journal Article
Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 8 Pages 1404
Keywords HEB, mixers, dynamic range, saturation, LO power, local oscillator power, Nb
Abstract The sensitivity of present Nb diffusion-cooled hot-electron bolometer (HEB) mixers is not quantum limited, and can be improved by reducing the superconducting transition temperature TC. Lowering TC reduces thermal fluctuations, resulting in a decrease of the mixer noise temperature TM. However, lower TC mixers have reduced dynamic range and saturate more easily due to background noise. We present 30 GHz microwave measurements on a bilayer HEB system, Nb–Au, in which TC can be tuned with Au layer thickness to obtain the maximum sensitivity for a given noise background. These measurements are intended as a guide for the optimization of THz mixers. Using a Nb–Au mixer with TC = 1.6 K, we obtain TM = 50 K with 2 nW of local oscillator (LO) power. Good mixer performance is observed over a wide range of LO power and bias voltage and such a device should not exhibit saturation in a THz receiver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 571
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene
Title First light with an 800 GHz phonon-cooled HEB mixer receiver Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 35-43
Keywords HEB, mixer, LO power, local oscillator power, saturation effect, dynamic range
Abstract Phonon-cooled superconductive hot-electron bolometric (HEB) mixers are incorporated in a waveguide receiver designed to operate near 800 Gliz. The mixer elements are thin-film nio- bium nitride microbridges with dimensions of 4 nm thickness, 0.2 to 0.3 p.m in length and 2 jun in width. At 780 GHz the best receiver noise temperature is 840 K (DSB). The mixer IF bandwidth is 2.0 GHz, the absorbed LO power is —0.1 1.1W. A fixed-tuned version of the re- ceiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, Arizona, to conduct astronomical observations. These observations represent the first time that a receiver incorporating any superconducting HEB mixer has been used to detect a spectral line of celes- tial origin.
Address
Corporate Author Thesis
Publisher Place of Publication Pasadena, California, USA Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 572
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.
Volume 48 Issue 4 Pages 683-689
Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range
Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 573
Permanent link to this record
 

 
Author Tong, C.-Y.E.; Meledin, D.V.; Marrone, D.P.; Paine, S.N.; Gibson, H.; Blundell, R.
Title Near field vector beam measurements at 1 THz Type Journal Article
Year 2003 Publication IEEE Microw. Compon. Lett. Abbreviated Journal
Volume 13 Issue 6 Pages 235-237
Keywords HEB, mixer, waveguide, LO power, local oscillator power, saturation effect, dynamic range
Abstract We have performed near-field vector beam measurements at 1.03 THz to characterize and align the receiver optics of a superconducting receiver. The signal source is a harmonic generator mounted on an X-Y translation stage. We model the measured two-dimensional complex beam pattern by a fundamental Gaussian mode, from which we derive the position of the beam center, the beam radius and the direction of propagation. By performing scans in the planes separated by 400 mm, we have confirmed that our beam pattern measurements are highly reliable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 574
Permanent link to this record
 

 
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C.
Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
Year 2007 Publication Proc. International conference on microwave and millimeter wave technology Abbreviated Journal Proc. ICMMT
Volume Issue Pages 1-3
Keywords HEB, mixer, gain bandwidth
Abstract In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.
Address
Corporate Author Thesis
Publisher Place of Publication Builin Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 575
Permanent link to this record