toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, J.; Kang, L.; Jin, B. B.; Xu, W. W.; Wu, P. H.; Zhang, W.; Jiang, L.; Li, N.; Shi, S. C.; Gol'tsman, G. N. url  doi
openurl 
  Title Properties of terahertz superconducting hot electron bolometer mixers Type Journal Article
  Year 2008 Publication Int. J. Terahertz Sci. Technol. Abbreviated Journal Int. J. Terahertz Sci. Technol.  
  Volume 1 Issue 1 Pages 37-41  
  Keywords NbN HEB mixers, noise temperature  
  Abstract (up) A quasi-optical superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixer has been fabricated and measured in the terahertz (THz) frequency range of 0.5~2.52 THz. A receiver noise temperature of 2000 K at 2.52 THz has been obtained for the mixer without corrections. Also, the effect of a Parylene C anti-reflection (AR) coating on the silicon (Si) lens has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1417  
Permanent link to this record
 

 
Author Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  doi
openurl 
  Title An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.  
  Volume 9 Issue 9 Pages 366-368  
  Keywords waveguide NbN HEB mixers  
  Abstract (up) A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1565  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Yagoubov, P.; Merkel, H.; Kollberg, E.; Yngvesson, K. S.; Voronov, B.; Gol’tsman, G. url  openurl
  Title IF bandwidth of phonon cooled HEB mixers made from NbN films on MgO substrates Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 219-227  
  Keywords NbN HEB mixers, cinversion gain bandwidth, IF bandwidth  
  Abstract (up) An investigation of gain and noise bandwidth of phonon-cooled hot-electron bolometric (HEB) mixers is presented. The radiation coupling to the mixers is quasioptical through either a spiral or twin-slot antenna. A maximum gain bandwidth of 4.8 GHz is obtained for mixers based on a 3.5 nm thin NbN film with Tc= 10 K. The noise bandwidth is 5.6 GHz, at the moment limited by parasitic elements in the, device mount fixture. At 0.65 THz the DSB receiver noise temperature is 700-800 К in the IF band 1-2 GHz, and 1150-2700 К in the band 3.5-7 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1557  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  openurl
  Title Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop  
  Volume Issue Pages 3-24  
  Keywords NbN HEB mixers  
  Abstract (up) During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address  
  Corporate Author Thesis  
  Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.  
  Language Summary Language Original Title  
  Series Editor Series Title NASA CP Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Volume: 211408 Approved no  
  Call Number Serial 1537  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract (up) During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address Monterey, CA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Wold, J.; Davidson, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no  
  Call Number Serial 1829  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: