|   | 
Details
   web
Records
Author Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A; Vacelet, T
Title Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges Type Journal Article
Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal <ef><bf><bc>Appl. Phys. Lett.
Volume 104 Issue Pages 052605(1-4)
Keywords NbN HEB mixers, local oscillator power, RF nonuniform absorption
Abstract We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 935
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B.
Title Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 331-336
Keywords NbN HEB mixers
Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 945
Permanent link to this record
 

 
Author Tretyakov, I.; Maslennikov, S.; Semenov, A.; Safir, O.; Finkel, M.; Ryabchun, S.; Kaurova, N.; Voronov, B.; Goltsman, G.; Klapwijk, T. M.
Title Impact of operating conditions on noise and gain bandwidth of NbN HEB mixers Type Conference Article
Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 39
Keywords NbN HEB mixers
Abstract Hot-electron bolometer mixers (HEB’s) are the most promising devices as mixing element for terahertz spectroscopy and astronomy at frequencies beyond 1.4 THz. They have a low noise temperature and low demands on local oscillator (LO) power. 1,2 An important limitation is the IF bandwidth, of the order of a few GHz, and which in principle depends on energy relaxation due to electron- phonon processes and on diffusion-cooling. It has been proposed by Prober that a reduction in length of the HEB would lead to an increased bandwidth. 3 This appeared to be achieved by Tretyakov et al by measuring the gain bandwidth close to the critical temperature of the NbN. 2 Unfortunately, the noise bandwidth of similar devices operated at temperatures around 4.2 K appear not depend on the length. The fundamental problem to be addressed is the position-dependent superconducting state of the HEB- devices under operating conditions, which determines the conditions for the cooling of the hot quasiparticles. Some progress has been made by Barends et al in a semi-empirical model to describe the I,V curves under operating conditions at a bath temperature around 4.2 K. 4 In more recent work Vercruyssen et al have analyzed the I,V curve, without any LO-equivalent bias, of a model NSN system. 5 This work suggests that the most appropriate model for an HEB under operating conditions is that of a potential-well in the superconducting gap in the center of the NbN, analogous the bimodal superconducting state described by Vercruyssen et al. Hot quasiparticles in the well can not diffuse out and can only cool by electron-phonon processes, those with higher energies than the heights of the walls of the well can diffuse out. Using this working hypothesis we have carried out experiments on a sub-micrometer NbN bridge connected to a gold (Au) planar spiral antenna. An in situ process is used to deposit Au on NbN. The Au is removed in the center to define the uncovered NbN, which will act as the superconducting mixer itself. The antenna is deposited on the remaining Au layer on the NbN. The Au contacts suppress the energy gap of the NbN film located underneath the gold layer 7,8 . The measured resistive transition is shown in Fig.1. It clearly shows a T c of the bilayer at 6.2 K and the resistive transition of the NbN itself around 9 K. In addition we show the measured noise bandwidth (red squares) for different bath temperatures. Clearly the noise bandwidth increases strongly by increasing the bath temperature from 5 K to 8 K, up to 13 GHz. We interpret this pattern as evidence for improved out-diffusion of hot electrons due to normal banks and a shallow superconducting potential well compared to k B T. As expected the noise temperature in this regime is much bigger than when biased at 4.2 K. R EFERENCES 1 W. Zhang, P. Khosropanah, J. R. Gao, E. L. Kollberg, K. S. Yngvesson, T. Bansal, R. Barends, and T. M. Klapwijk Appl. Phys. Lett. 96, 111113, (2010). 2 Ivan Tretyakov, Sergey Ryabchun, Matvey Finkel, Anna Maslennikova, Natalia Kaurova, Anastasia Lobastova, Boris Voronov, and Gregory Gol’tsman Appl. Phys. Lett. 98, 033507 (2011). 3 D. E. Prober, Appl. Phys. Lett. 62, 2119 (1992). 4 R. Barends, M. Hajenius, J. R. Gao, and T. M. Klapwijk, Appl. Phys. Lett. 87, 263506 (2005). 5 N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, J. P. Pekola, and T. M. Klapwijk Physical Review B 85, 224503 (2012).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1159
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Desmaris, V.; Belitsky, V.; Gol’tsman, G.
Title Gain bandwidth of NbN HEB mixers on GaN buffer layer operating at 2 THz local oscillator frequency Type Conference Article
Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 147-148
Keywords NbN HEB mixers, GaN buffer-layer, IF bandwidth
Abstract In this paper, we present IF bandwidth measurement results of NbN HEB mixers, which are employing NbN thin films grown on a GaN buffer-layer. The HEB mixers were operated in the heterodyne regime at a bath temperature of approximately 4.5 K and with a local oscillator operating at a frequency of 2 THz. A quantum cascade laser served as the local oscillator and a reference synthesizer based on a BWO generator (130-160 GHz) and a semiconductor superlattice (SSL) frequency multiplier was used as a signal source. By changing the LO frequency it was possible to record the IF response or gain bandwidth of the HEB with a spectrum analyzer at the operation point, which yielded lowest noise temperature. The gain bandwidth that was recorded in the heterodyne regime at 2 THz amounts to approximately 5 GHz and coincides well with a measurement that has been performed at elevated bath temperatures and lower LO frequency of 140 GHz. These findings strongly support that by using a GaN buffer-layer the phonon escape time of NbN HEBs can be significantly lower as compared to e.g. Si substrate, thus, providing higher gain bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1175
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K.
Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances
Volume 9 Issue 7 Pages 075307
Keywords NbN HEB mixers, QCL, IR
Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1293
Permanent link to this record