|   | 
Details
   web
Records
Author (up) Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Svechnikov, S. I.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.
Title NbN hot electron bolometric mixer for 2.5 THz: the phonon cooled version Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 258-271
Keywords NbN HEB mixers
Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. NbN HEBs are phonon-cooled de-. vices which are expected, according to theory, to achieve up to 10 GHz IF conversion gain bandwidth. We have developed an antenna coupled device using a log-periodic antenna and a silicon lens. We have demon- strated that sufficient LO power can be coupled to the device in order to bring it to the optimum mixer oper- ating point. The LO power required is less than 1 microwatts as measured directly at the device. We also describe the impedance characteristics of NbN devices and compare them with theory. The experimental results agree with theory except for the imaginary part of the impedance at very low frequencies as was demonstrated by other groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1605
Permanent link to this record
 

 
Author (up) Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 47-50
Keywords NbN HEB mixers
Abstract
Address Charlottesville, Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1601
Permanent link to this record
 

 
Author (up) Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 47 Issue 12 Pages 2519-2527
Keywords NbN HEB mixers
Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-9670 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1560
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.
Title Hot electron bolometric mixers: new terahertz technology Type Journal Article
Year 1999 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 40 Issue 3 Pages 199-206
Keywords NbN HEB mixers
Abstract This paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixers has crossed the level of 1 K GHz−1 at 430 GHz (410 K), 600–650 GHz (480 K), 750 GHz (600 K), 810 GHz (780 K) and is close to that level at 1.1 THz (1250 K) and 2.5 THz (4500 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and about 100 nW for mixers made by e-beam lithography. A waveguide version of 800 GHz receiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, AZ, to conduct astronomical observations of known submillimeter lines (CO, J=7→6, CI, J=2→1). It was proved that the receiver works as a practical instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1570
Permanent link to this record
 

 
Author (up) Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.
Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages 3065-3068
Keywords NbN HEB mixers
Abstract NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes About LO power required Approved no
Call Number Serial 255
Permanent link to this record