|   | 
Details
   web
Records
Author (up) Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S.
Title Thermal relaxation in metal films limited by diffuson lattice excitations of amorphous substrates Type Journal Article
Year 2021 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 15 Issue 5 Pages 054014
Keywords InOx, Au/Ni, NbN films
Abstract We examine the role of a silicon-based amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The samples studied consist of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry is used to measure the electron temperature Te of the films as a function of Joule power per unit area P2D. In all samples, we observe a P2D∝Tne dependence, with exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear temperature dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for a phonon mean free path shorter than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1769
Permanent link to this record
 

 
Author (up) Beebe, M. R.; Beringer, D. B.; Burton, M. C.; Yang, K.; Lukaszew, R. A.
Title Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films Type Journal Article
Year 2016 Publication Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Abbreviated Journal Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Volume 34 Issue 2 Pages 021510 (1 to 4)
Keywords potential plagiarism, possible plagiarism, NbN films
Abstract The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB2 thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature TC, the authors are the first to report on the correlation between stoichiometry and the lower critical field HC1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101 ISBN Medium
Area Expedition Conference
Notes Potential plagiarism for 1503 Approved no
Call Number Serial 1504
Permanent link to this record
 

 
Author (up) Budyanskij, M. Ya.; Sejdman, L. A.; Voronov, B. M.; Gubkina, T. O.
Title Increase of reproducibility in production of superconducting thin films of niobium nitride Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 10 Pages 1950-1954
Keywords NbN films
Abstract Technique to control the composition of gas medium in the reactive magnetron discharge and the composition of the deposited films of niobium nitride using electrical parameters of discharge only, in particular, by δU = Up – Uar value at contant stabilized discharge current is described. Technique to select optimal condition for deposition of niobium nitride films when the films have composition meeting chemical formula, is suggested. Thin films of niobium nitride with up to 7 nm thickness and with rather high temperature of transition into superconducting state Tk > 10 K) and with low width of transition (δ < 0.6 K), are obtained. It is determined, that substrate material and dielectric sublayer do not affect. Tk value, while difference in coefficients of thermal expansion of substrate and of film affects δTk value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1675
Permanent link to this record
 

 
Author (up) Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Klapwijk, T. M.; Voronov, B.; Grishin, E.; Gol’tsman, G.; Zorman, C. A.; Mehregany, M.
Title Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 91 Issue 6 Pages 062504 (1 to 3)
Keywords NbN films, nanofilms
Abstract The authors have realized NbN (100) nanofilms on a 3C-SiC (100)/Si(100) substrate by dc reactive magnetron sputtering at 800°C. High-resolution transmission electron microscopy (HRTEM) is used to characterize the films, showing a monocrystalline structure and confirming epitaxial growth on the 3C-SiC layer. A film ranging in thickness from 3.4to4.1nm shows a superconducting transition temperature of 11.8K, which is the highest reported for NbN films of comparable thickness. The NbN nano-films on 3C-SiC offer a promising alternative to improve terahertz detectors. For comparison, NbN nanofilms grown directly on Si substrates are also studied by HRTEM.

The authors acknowledge S. V. Svetchnikov at National Centre for HRTEM at Delft, who prepared the specimens for HRTEM inspections. This work was supported by the EU through RadioNet and INTAS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1425
Permanent link to this record
 

 
Author (up) Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1403
Permanent link to this record