|   | 
Details
   web
Records
Author Esteban, Eduin; Serna, Hernandez
Title Quantum key distribution protocol with private-public key Type Journal Article
Year 2009 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 3
Keywords quantum cryptography; QKD; protocol
Abstract A quantum cryptographic protocol based in public key cryptography combinations and private key cryptography is presented. Unlike the BB84 protocol 1 and its many variants 2,3 two quantum channels are used. The present research does not make reconciliation mechanisms of information to derive the key. A three related system of key distribution are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes arXiv: 0908.2146 Approved no
Call Number RPLAB @ gujma @ Serial 756
Permanent link to this record
 

 
Author Hadfield, Robert. H.; Habif, Jonathan L.; Schlafer, John; Schwall, Robert. E.; Nam, Sae Woo
Title Quantum key distribution at 1550 nm with twin superconducting single-photon detectors Type Journal Article
Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 89 Issue 24 Pages 241129
Keywords SSPD, quantum cryptography
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 533
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Hacking commercial quantum cryptography systems by tailored bright illumination Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 10 Pages 686 - 689
Keywords quantum cryptography, hacking, QKD, APD
Abstract The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 657
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
Year 2010 Publication Optics Express Abbreviated Journal Opt. Express
Volume 18 Issue 26 Pages 27938-27954
Keywords quantum cryptography; QKD; hacking; SPD; APD
Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 729
Permanent link to this record
 

 
Author Scheel, Stefan
Title Single-photon sources–an introduction Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal
Volume 56 Issue 2-3 Pages 141-160
Keywords LOQC; quantum cryptography; QKD
Abstract This review surveys the physical principles and recent developments in manufacturing single-photon sources. Special emphasis is placed on important potential applications such as linear optical quantum computing (LOQC), quantum key distribution (QKD) and quantum metrology that drive the development of these sources of single photons. We discuss the quantum-mechanical properties of light prepared in a quantum state of definite photon number and compare it with coherent light that shows a Poissonian distribution of photon numbers. We examine how the single-photon fidelity directly influences the ability to transmit secure quantum bits over a predefined distance. The theoretical description of modified spontaneous decay, the main principle behind single-photon generation, provides the background for many experimental implementations such as those using microresonators or pillar microcavities. The main alternative way to generate single photons using postselection of entangled photon pairs from parametric down-conversion, will be discussed. We concentrate on describing the underlying physical principles and we will point out limitations and open problems associated with single-photon production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 669
Permanent link to this record