|   | 
Details
   web
Records
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M.
Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue (up) Pages CThM8
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors
Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1517
Permanent link to this record
 

 
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G.
Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type Miscellaneous
Year 2001 Publication OFCC/ICQI Abbreviated Journal OFCC/ICQI
Volume Issue (up) Pages Pa3
Keywords NbN SSPD, SNSPD, QKD, quantum cryptography
Abstract We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.
Address Rochester, New York
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information
Notes -- from poster session. Approved no
Call Number Serial 1544
Permanent link to this record
 

 
Author Takesue, Hiroki; Nam, Sae Woo; Zhang, Qiang; Hadfield, Robert H.; Honjo, Toshimori; Tamaki, Kiyoshi; Yamamoto, Yoshihisa
Title Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors Type Journal Article
Year 2007 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 1 Issue (up) Pages 343-348
Keywords quantum cryptography, SSPD, QKD, DSP
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 609
Permanent link to this record
 

 
Author Курочкин, Юрий Владимирович
Title Методы повышения пропускной способности квантовой криптографии Type Manuscript
Year 2011 Publication МФТИ Abbreviated Journal
Volume Issue (up) Pages
Keywords quantum cryptography
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 762
Permanent link to this record
 

 
Author Esteban, Eduin; Serna, Hernandez
Title Quantum key distribution protocol with private-public key Type Journal Article
Year 2009 Publication arXiv Abbreviated Journal arXiv
Volume Issue (up) Pages 3
Keywords quantum cryptography; QKD; protocol
Abstract A quantum cryptographic protocol based in public key cryptography combinations and private key cryptography is presented. Unlike the BB84 protocol 1 and its many variants 2,3 two quantum channels are used. The present research does not make reconciliation mechanisms of information to derive the key. A three related system of key distribution are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes arXiv: 0908.2146 Approved no
Call Number RPLAB @ gujma @ Serial 756
Permanent link to this record