Records |
Author |
Mygind, J.; Samuelsen, M. R.; Koshelets, V. P.; Sobolev, A. S. |
Title |
Simple theory for the spectral. linewidth of the mm-wave Josephson flux flow oscillator |
Type |
Abstract |
Year |
2005 |
Publication |
Pi-shift Workshop “Physics of superconducting phase-shift devices” |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
22-22 |
Keywords |
SIR |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Ischia, Italy |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
520 |
Permanent link to this record |
|
|
|
Author |
Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Filippenko, L. V.; Sobolev, A. S.; Torgashin, M. Yu.; Borisov, V. B. |
Title |
Superconducting flux-flow oscillators for THz integrated receiver |
Type |
Abstract |
Year |
2005 |
Publication |
Presented at the second Franco-Russian Seminar on Nanotechnologies |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
SIR |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Lille, France |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
521 |
Permanent link to this record |
|
|
|
Author |
Vaks, V. L.; Kurin, V. V.; Pankratov, A. L.; Koshelets, V. P. |
Title |
Investigation of spectral properties of phase-focked flux flow oscillator |
Type |
Abstract |
Year |
2005 |
Publication |
ISEC |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
PD-04 |
Keywords |
SIR, FFO |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Netherlands |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
522 |
Permanent link to this record |
|
|
|
Author |
Kinev, N. V.; Filippenko, L. V.; Ozhegov, R. V.; Gorshkov, K. N.; Gol’tsman, G. N.; Koshelets, V. P. |
Title |
Superconducting integrated receiver with HEB-mixer |
Type |
Abstract |
Year |
2014 |
Publication |
Proc. 25th Int. Symp. Space Terahertz Technol. |
Abbreviated Journal |
Proc. 25th Int. Symp. Space Terahertz Technol. |
Volume |
|
Issue |
|
Pages |
78 |
Keywords |
NbN HEB mixer, SIR, superconducting integrated receiver |
Abstract |
Detectors in THz range with high sensitivity are very essential nowadays in different fields: space technology, atmospheric research, medicine and security. The most sensitive heterodyne detectors below 1 THz are the SIS- mixers due to its extremely high non-linearity and low noise level. Nevertheless, their effective range is strongly limited by superconducting gap Δ (about 1 THz for NbN circuits). Above 1 THz the detectors based on HEB (hot electron bolometers) are more effective [1]; their operation frequency is not limited from above and can be up to 70 THz [2]. HEBs can perform as both direct and heterodyne detectors (mixers). All HEB-mixers are used with external heterodyne, most useful are synthesizer with multipliers, quantum cascade lasers or far infrared lasers and backward-wave oscillators. Superconducting integrated receiver (SIR) is based on implementation of both SIS-miser and flux flow oscillator (FFO) acting as heterodyne at single chip [3]. Such receiver has been successfully applied at TELIS balloon-borne instrument for study of atmospheric constituents [4] and looks as very promising device for other THz missions including space research. Thus, there is a task to expand its operating range to higher frequencies. The frequency range of the SIR the operation is limited by both the SIS-mixer and the FFO maximum frequencies. The idea of present work is implementation of the HEB as a mixer in the SIR instead of the SIS traditionally used. We introduce the first results of integrating the HEB-mixer coupled to planar slot antenna with the FFO on one chip. For properly FFO operation the SIS harmonic mixer is used to phase lock the oscillator. The scheme of the SIR based on the HEB- mixer is presented in fig. 1. We have demonstrated the principal possibility of integration of both the HEB-mixer and the flux-flow oscillator on a single chip and succeed with sufficient power coupling for properly receiver operation. We measured the direct response of the HEB coupled to the antenna at THz frequencies by the FTS setup and noise temperature of the receiver with standard Y- factor measuring technique. The SIR operating range 450-620 GHz was achieved with the best uncorrected noise temperature of about 1000 К. One should note that it is still quite low frequencies for effective operation of the HEB-mixer; therefore we expect to obtain the better results for frequencies above 700 GHz (up to 1.2 THz). Another additional task is to increase the FFO frequencies by using NbTiN electrodes instead of NbN; currently we are working on this issue. This work was supported by the RFBR grant, the Ministry of Education and Science of Russia and Russian Academy of Sciences. References 1. D. Semenov, H.-W. Hubers, J. Schubert, G. N. Gol’tsman, A. I. Elantiev, B. M. Voronov, E. M. Gershenzon, Design and performance of the lattice-cooled hot-electron terahertz mixer, J. Appl. Phys. 88, 6758, 2000. 2. Maslennikov S. N., Finkel M. I., Antipov S. V. et al. Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70THz. Proc. 17 th international symposium on space terahertz technology. Paris, France: 2006.—may. Pp. 177 – 179. 3. V.P. Koshelets, S.V. Shitov. Integrated Superconducting Receivers. Supercond. Sci. Technol. Vol. 13. P. R53-R59. 2000. 4. Gert de Lange, Dick Boersma, Johannes Dercksen et.al. Development and Characterization of the Superconducting Integrated Receiver Channel of the TELIS Atmospheric Sounder. Supercond. Sci. Technol. vol. 23, No 4, 045016 (8pp). 2010. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1363 |
Permanent link to this record |
|
|
|
Author |
Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. |
Title |
Terahertz imaging system based on superconducting integrated receiver |
Type |
Conference Article |
Year |
2010 |
Publication |
Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications |
Abbreviated Journal |
Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications |
Volume |
|
Issue |
|
Pages |
20-22 |
Keywords |
SIS mixer, SIR |
Abstract |
The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
ozhegov2010terahertz |
Serial |
1397 |
Permanent link to this record |