|   | 
Details
   web
Records
Author Smirnov, K.; Divochiy, A.; Vakhtomin, Y.; Morozov, P.; Zolotov, P.; Antipov, A.; Seleznev, V.
Title NbN single-photon detectors with saturated dependence of quantum efficiency Type Journal Article
Year 2018 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 31 Issue 3 Pages 035011 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract (up) The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of Rs300/Rs20. The decreasing of Rs300/Rs20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at Ib/Ic ~ 0.8 and wavelength 1310 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1232
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A.
Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012195 (1 to 4)
Keywords SSPD modelling, SNSPD
Abstract (up) The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1785
Permanent link to this record
 

 
Author Lindgren, M.; Currie, M.; Zeng, W.-S.; Sobolewski, R.; Cherednichenko, S.; Voronov, B.; Gol'tsman, G. N.
Title Picosecond response of a superconducting hot-electron NbN photodetector Type Journal Article
Year 1998 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.
Volume 6 Issue 7-9 Pages 423-428
Keywords NbN SSPD, SNSPD
Abstract (up) The ps optical response of ultrathin NbN photodetectors has been studied by electro-optic sampling. The detectors were fabricated by patterning ultrathin (3.5 nm thick) NbN films deposited on sapphire by reactive magnetron sputtering into either a 5×10 μm2 microbridge or 25 1 μm wide, 5 μm long strips connected in parallel. Both structures were placed at the center of a 4 mm long coplanar waveguide covered with Ti/Au. The photoresponse was studied at temperatures ranging from 2.15 K to 10 K, with the samples biased in the resistive (switched) state and illuminated with 100 fs wide laser pulses at 395 nm wavelength. At T=2.15 K, we obtained an approximately 100 ps wide transient, which corresponds to a NbN detector response time of 45 ps. The photoresponse can be attributed to the nonequilibrium electron heating effect, where the incident radiation increases the temperature of the electron subsystem, while the phonons act as the heat sink. The high-speed response of NbN devices makes them an excellent choice for an optoelectronic interface for superconducting digital circuits, as well as mixers for the terahertz regime. The multiple-strip detector showed a linear dependence on input optical power and a responsivity =3.9 V/W.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0964-1807 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1584
Permanent link to this record
 

 
Author Il’in, K. S.; Milostnaya, I. I.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Sobolewski, R.
Title Ultimate quantum efficiency of a superconducting hot-electron photodetector Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 26 Pages 3938-3940
Keywords NbN SSPD, SNSPD
Abstract (up) The quantum efficiency and current and voltage responsivities of fast hot-electron photodetectors, fabricated from superconducting NbN thin films and biased in the resistive state, have been shown to reach values of 340, 220 A/W, and 4×104 V/W,

respectively, for infrared radiation with a wavelength of 0.79 μm. The characteristics of the photodetectors are presented within the general model, based on relaxation processes in the nonequilibrium electron heating of a superconducting thin film. The observed, very high efficiency and sensitivity of the superconductor absorbing the photon are explained by the high multiplication rate of quasiparticles during the avalanche breaking of Cooper pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1579
Permanent link to this record
 

 
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N.
Title Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures Type Abstract
Year 2009 Publication Proc. Progress In Electromagnetics Research Symp. Abbreviated Journal Proc. Progress In Electromagnetics Research Symp.
Volume Issue Pages 863-864
Keywords SSPD, SNSPD
Abstract (up) The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Moscow, Russia Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ smirnovsession Serial 1050
Permanent link to this record