|   | 
Details
   web
Records
Author Morozov, P.; Lukina, M.; Shirmanova, M.; Divochiy, A.; Dudenkova, V.; Gol'tsman, G. N.; Becker, W.; Shcheslavskiy, V. I.
Title Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting Type Journal Article
Year 2021 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 46 Issue 6 Pages 1217-1220
Keywords SSPD, SNSPD, applications
Abstract (up) This Letter presents, to the best of our knowledge, a novel optical configuration for direct time-resolved measurements of luminescence from singlet oxygen, both in solutions and from cultured cells on photodynamic therapy. The system is based on the superconducting single-photon detector, coupled to the confocal scanner that is modified for the near-infrared measurements. The recording of a phosphorescence signal from singlet oxygen at 1270 nm has been done using time-correlated single-photon counting. The performance of the system is verified by measuring phosphorescence from singlet oxygen generated by the photosensitizers commonly used in photodynamic therapy: methylene blue and chlorin e6. The described system can be easily upgraded to the configuration when both phosphorescence from singlet oxygen and fluorescence from the cells can be detected in the imaging mode. Thus, co-localization of the signal from singlet oxygen with the areas inside the cells can be done.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:33720151 Approved no
Call Number Serial 1221
Permanent link to this record
 

 
Author McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S.
Title Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection Type Journal Article
Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 21 Issue 7 Pages 8904-8915
Keywords SSPD, SNSPD, lidar, SSPD applications, SNSPD applications
Abstract (up) This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1053
Permanent link to this record
 

 
Author Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V.
Title Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber Type Journal Article
Year 2015 Publication J. Nanophoton. Abbreviated Journal
Volume 9 Issue 1 Pages 093051
Keywords SSPD, SNSPD
Abstract (up) This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3  μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7  μm2. The improved SSPD demonstrates a record timing jitter (<25  ps), an ultrashort recovery time (<2  ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-2608 ISBN Medium
Area Expedition Conference
Notes 10.1117/1.JNP.9.093051 Approved no
Call Number RPLAB @ sasha @ Serial 1052
Permanent link to this record
 

 
Author Kurochkin, V. L.; Zverev, A. V.; Kurochkin, Y. V.; Ryabtsev, I. I.; Neizvestnyi, I. G.; Ozhegov, R. V.; Gol’tsman, G. N.; Larionov, P. A.
Title Long-distance fiber-optic quantum key distribution using superconducting detectors Type Conference Article
Year 2015 Publication Proc. Optoelectron. Instrum. Abbreviated Journal Proc. Optoelectron. Instrum.
Volume 51 Issue 6 Pages 548-552
Keywords QKD, SSPD, SNSPD
Abstract (up) This paper presents the results of experimental studies on quantum key distribution in optical fiber using superconducting detectors. Key generation was obtained on an experimental setup based on a self-compensation optical circuit with an optical fiber length of 101.1 km. It was first shown that photon polarization encoding can be used for quantum key distribution in optical fiber over a distance in excess of 300 km.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8756-6990 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1342
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W.
Title Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector Type Journal Article
Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal
Volume 87 Issue Pages 053117 (1 to 5)
Keywords SSPD, SNSPD, TCSPC, jitter
Abstract (up) Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1077
Permanent link to this record