|   | 
Details
   web
Records
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R.
Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 246-251
Keywords SSPD, SNSPD
Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 431
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W.
Title Ultimate performance of a superconducting quantum detector Type Journal Article
Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.
Volume 21 Issue 3 Pages 171-178
Keywords NbN SSPD, SNSPD
Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 534
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G.
Title Ultrafast superconducting single-photon detector Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 15 Pages 1670-1680
Keywords SSPD, SNSPD
Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 607
Permanent link to this record
 

 
Author Xiaolong Hu; Holzwarth, C.W.; Masciarelli, D.; Dauler, E.A.; Berggren, K.K.
Title Efficiently coupling light to superconducting nanowire single-photon detectors Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 19 Issue 3 Pages 336-340
Keywords optical antennas; SNSPD
Abstract We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, (1) for the free-space coupling, the absorptance of the NbN nanowire for TM-polarized photons at the wavelength of 1550 nm can be as high as 96% by adding silver optical antennae; (2) for the fiber coupling, the absorptance of the NbN nanowire for TE-like-polarized photons can reach 76% including coupling efficiency at the wavelength of 1550 nm by adding a silicon nitride waveguide and an inverse-taper coupler.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 647
Permanent link to this record
 

 
Author Annunziata, Anthony J.; Quaranta, Orlando; Santavicca, Daniel F.; Casaburi, Alessandro; Frunzio, Luigi; Ejrnaes, Mikkel; Rooks, Michael J.; Cristiano, Roberto; Pagano, Sergio; Frydman, Aviad; Prober, Daniel E.
Title Reset dynamics and latching in niobium superconducting nanowire single-photon detectors Type Journal Article
Year 2010 Publication J. Appl. Phys. Abbreviated Journal
Volume 108 Issue 8 Pages 7
Keywords SNSPD
Abstract We study the reset dynamics of niobium (Nb) superconducting nanowire single-photon detectors (SNSPDs) using experimental measurements and numerical simulations. The numerical simulations of the detection dynamics agree well with experimental measurements, using independently determined parameters in the simulations. We find that if the photon-induced hotspot cools too slowly, the device will latch into a dc resistive state. To avoid latching, the time for the hotspot to cool must be short compared to the inductive time constant that governs the resetting of the current in the device after hotspot formation. From simulations of the energy relaxation process, we find that the hotspot cooling time is determined primarily by the temperature-dependent electron-phonon inelastic time. Latching prevents reset and precludes subsequent photon detection. Fast resetting to the superconducting state is, therefore, essential, and we demonstrate experimentally how this is achieved. We compare our results to studies of reset and latching in niobium nitride SNSPDs.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 649
Permanent link to this record