|   | 
Details
   web
Records
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W.
Title (up) Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 87 Issue 6 Pages 069901
Keywords SSPD, SNSPD, TCSPC, jitter
Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).
Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6748 ISBN Medium
Area Expedition Conference
Notes PMID:27370512 Approved no
Call Number Serial 1810
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title (up) Erratum: “Single photon experiments at telecom wavelengths using nanowire superconducting detectors” [Appl. Phys. Lett. 91, 031106 (2007)] Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 8 Pages 089901
Keywords SSPD, SNSPD, erratum
Abstract A calculation error was made in the original publication of this letter. The error was in the calculation of the noise equivalent power (NEP) values for the avalanche photodiode detector (APD) and the superconducting single photon detector (SSPD), the incorrect values were plotted on the right axis in Fig. 1(b). The correct NEP values were calculated with the same equation reported in the original letter and the revised Fig. 1(b) is shown below. The other conclusions of the paper remain unaltered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1395
Permanent link to this record
 

 
Author Casaburi, A.; Ejrnaes, M.; Quaranta, O.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol'tsman, G.; Lisitskiy, M.; Esposito, E.; Nappi, C.; Cristiano, R.; Pagano, S.
Title (up) Experimental characterization of NbN nanowire optical detectors with parallel stripline configuration Type Conference Article
Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue Pages 012265 (1 to 6)
Keywords NbN SSPD, SNSPD
Abstract We have developed a novel geometrical configuration for NbN-based superconducting single photon optical detector (SSPD) that achieves two goals: a much lower intrinsic impedance, and a consequently greater bandwidth, and a much larger signal amplitude compared to the standard meandered configuration. This has been obtained by implementing a properly designed parallel stripline structure where a cascade switching mechanism occurs when one of the striplines is hit by an optical photon. The overall switching occurs synchronously and in a very short time, giving rise to a strong and fast voltage pulse. The SSPD have been realized using state of the art NbN deposition technology and e-beam lithography. The strips are 100 nm wide and 5 μm long and have been realized with 4 nm NbN film on sapphire and Si substrate. We report on experimental characterization of such novel devices. The performances of the proposed novel type of SSPD are compared with standard SSPD design and results in terms of signal amplitude, risetime and effective detection area.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596 ISBN Medium
Area Expedition Conference 8th European Conference on Applied Superconductivity (EUCAS 2007)
Notes Approved no
Call Number Serial 1416
Permanent link to this record
 

 
Author Polyakova, M. I.; Florya, I. N.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N.
Title (up) Extracting hot-spot correlation length from SNSPD tomography data Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012166 (1 to 4)
Keywords SSPD, SNSPD, quantum detector tomography, QDT
Abstract We present data of quantum detector tomography for the samples specifically optimized for this problem. Using this method, we take results of hot-spot correlation length of 17 ± 2 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1273
Permanent link to this record
 

 
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R.
Title (up) Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 574-577
Keywords NbN SSPD, SNSPD
Abstract A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1547
Permanent link to this record