|   | 
Details
   web
Records
Author Mohan, Nishant; Minaeva, Olga; Goltsman, Gregory N.; Saleh, Mohammed F.; Nasr, Magued B.; Sergienko, Alexander V.; Saleh, Bahaa E.; Teich, Malvin C.
Title Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm Type Journal Article
Year 2009 Publication Appl. Opt. Abbreviated Journal Appl. Opt.
Volume (down) 48 Issue 20 Pages 4009–4017
Keywords SSPD, SNSPD, SPAD
Abstract Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm. This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064 nm, via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 652
Permanent link to this record
 

 
Author Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A.
Title Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors Type Journal Article
Year 2009 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal
Volume (down) 47 Issue Pages 10701
Keywords SSPD, SNSPD
Abstract We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ alex_kazakov @ Serial 1062
Permanent link to this record
 

 
Author Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm; Ilin, Konstantin; Siegel, Michael; Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory
Title Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors Type Abstract
Year 2013 Publication INIS Abbreviated Journal INIS
Volume (down) 46 Issue 8 Pages 1-3
Keywords TaN, NbN SSPD, SNSPD
Abstract The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1374
Permanent link to this record
 

 
Author Morozov, P.; Lukina, M.; Shirmanova, M.; Divochiy, A.; Dudenkova, V.; Gol'tsman, G. N.; Becker, W.; Shcheslavskiy, V. I.
Title Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting Type Journal Article
Year 2021 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume (down) 46 Issue 6 Pages 1217-1220
Keywords SSPD, SNSPD, applications
Abstract This Letter presents, to the best of our knowledge, a novel optical configuration for direct time-resolved measurements of luminescence from singlet oxygen, both in solutions and from cultured cells on photodynamic therapy. The system is based on the superconducting single-photon detector, coupled to the confocal scanner that is modified for the near-infrared measurements. The recording of a phosphorescence signal from singlet oxygen at 1270 nm has been done using time-correlated single-photon counting. The performance of the system is verified by measuring phosphorescence from singlet oxygen generated by the photosensitizers commonly used in photodynamic therapy: methylene blue and chlorin e6. The described system can be easily upgraded to the configuration when both phosphorescence from singlet oxygen and fluorescence from the cells can be detected in the imaging mode. Thus, co-localization of the signal from singlet oxygen with the areas inside the cells can be done.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:33720151 Approved no
Call Number Serial 1221
Permanent link to this record
 

 
Author Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R.
Title NbN superconducting single-photon detector coupled with a communication fiber Type Journal Article
Year 2005 Publication Elektronika : konstrukcje, technologie, zastosowania Abbreviated Journal
Volume (down) 46 Issue 6 Pages 51-52
Keywords NbN SSPD, SNSPD
Abstract We present novel superconducting single-photon detectors (SSPDs), ba­sed on ultrathin NbN films, designed for fiber-based quantum communica­tions (lambda = 1.3 žm and 1.55 žm). For fiber-based operation, our SSPDs contain a special micromechanical construction integrated with the NbN structure, which enables efficient and mechanically very stabile fiber coupling. The detectors combine GHz counting rate, high quantum efficiency and very low level of dark counts. At 1.3 – 1.55 žm wavelength range our detector exhibits a quantum efficiency up to 10%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Polish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1481
Permanent link to this record