|   | 
Details
   web
Records
Author Manus, M. K. Mc; Kash, J. A.; Steen, S. E.; Polonsky, S.; Tsang, J.C.; Knebel, D. R.; Huott, W.
Title PICA: Backside failure analysis of CMOS circuits using picosecond imaging circuit analysis Type Journal Article
Year 2000 Publication Microelectronics Reliability Abbreviated Journal Microelectronics Reliability
Volume 40 Issue Pages 1353-1358
Keywords SSPD, CMOS testing
Abstract Normal operation of complementary metal-oxide semiconductor (CMOS) devices entails the emission of picosecond pulses of light, which can be used to diagnose circuit problems. The pulses that are observed from submicron sized field effect transistors (FETs) are synchronous with logic state switching. Picosecond Imaging Circuit Analysis (PICA), a new optical imaging technique combining imaging with timing, spatially resolves individual devices at the 0.5 micron level and switching events on a 10 picosecond timescale. PICA is used here for the diagnostics of failures on two VLSI microprocessors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number Serial 1054
Permanent link to this record
 

 
Author Stellari, Franco; Song, Peilin
Title Testing of ultra low voltage CMOS microprocessors using the superconducting single-photon detector (SSPD) Type Conference Article
Year 2005 Publication Proc. 12th IPFA Abbreviated Journal Proc. 12th IPFA
Volume Issue Pages 2
Keywords SSPD, CMOS testing
Abstract In F. Stellari and P. Song (2004) the authors have shown a comparison among different detectors used for diagnosing integrated circuits (ICs) by means of the PICA method. In their experiments they used two versions of the SSPD detector (p-SSPD is a prototype version, while c-SSPD is the first commercially available generation of the detector as presented in W. K. Lo et al. (2002), as well as the imaging detector (S-25 photo-multiplier tube (PMT) as discussed in W. G. McMullan (1987)) used in the conventional PICA technique. A microprocessor chip fabricated in a 0.13 μm 1.2 V technology is used to show that c-SSPD provides a significant reduction in acquisition time for the collection of optical waveforms from chips running at very low. In this paper, the authors summarize the main results.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-9301-5 Medium
Area Expedition Conference (up)
Notes Approved no
Call Number Serial 1055
Permanent link to this record
 

 
Author Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.
Title Detecting single infrared photons with 93% system efficiency Type Journal Article
Year 2013 Publication Nat. Photon. Abbreviated Journal
Volume 7 Issue 3 Pages 210-214
Keywords SSPD quantum efficiency
Abstract Single-photon detectors1 at near-infrared wavelengths with high system detection efficiency (>90%), low dark count rate (<1 c.p.s.), low timing jitter (<100 ps) and short reset time (<100 ns) would enable landmark experiments in a variety of fields2, 3, 4, 5, 6. Although some of the existing approaches to single-photon detection fulfil one or two of the above specifications1, to date, no detector has met all of the specifications simultaneously. Here, we report on a fibre-coupled single-photon detection system that uses superconducting nanowire single-photon detectors7 and closely approaches the ideal performance of single-photon detectors. Our detector system has a system detection efficiency (including optical coupling losses) greater than 90% in the wavelength range λ = 1,520–1,610 nm, with a device dark count rate (measured with the device shielded from any background radiation) of ~1 c.p.s., timing jitter of ~150 ps full-width at half-maximum (FWHM) and reset time of 40 ns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number Serial 1056
Permanent link to this record
 

 
Author Kitaygorsky, J.; Zhang, J.; Verevkin, A.; Sergeev, A.; Korneev, A.; Matvienko, V.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Sobolewski, R.
Title Origin of dark counts in nanostructured NbN single-photon detectors Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 545-548
Keywords SSPD dark counts, SNSPD, dark counts rate
Abstract We present our study of dark counts in ultrathin (3.5 to 10 nm thick), narrow (120 to 170 nm wide) NbN superconducting stripes of different lengths. In experiments, where the stripe was completely isolated from the outside world and kept at temperature below the critical temperature Tc, we detected subnanosecond electrical pulses associated with the spontaneous appearance of the temporal resistive state. The resistive state manifested itself as generation of phase-slip centers (PSCs) in our two-dimensional superconducting stripes. Our analysis shows that not far from Tc, PSCs have a thermally activated nature. At lowest temperatures, far below Tc, they are created by quantum fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number Serial 1057
Permanent link to this record
 

 
Author Zhang, Jin; Slysz, W.; Verevkin, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G. N.; Sobolewski, R.
Title Response time characterization of NbN superconducting single-photon detectors Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 13 Issue 2 Pages 180-183
Keywords SSPD jitter, SNSPD jitter
Abstract We report our time-resolved measurements of NbN-based superconducting single-photon detectors. The structures are meander-type, 10-nm thick, and 200-nm wide stripes and were operated at 4.2 K. We have shown that the NbN devices can count single-photon pulses with below 100-ps time resolution. The response signal pulse width was about 150 ps, and the system jitter was measured to be 35 ps.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number Serial 1058
Permanent link to this record